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Poet, oracle and wit

Like unsuccessful anglers by

The ponds of apperception sit,

Baiting with the wrong request

The vectors of their interest;

At nightfall tell the angler’s lie.

With time in tempest everywhere,

To rafts of frail assumption cling

The saintly and the insincere;

Enraged phenomena bear down

In overwhelming waves to drown

Both sufferer and suffering.

The waters long to hear our question put

Which would release their longed for answer, but.

W.H. Auden

Preface
This is a text where concrete physical problems are posed and the ensuing mathematical theory

is developed, tested, applied and associated with existing theory. The problems I pose spring from
questions of equilibria, dynamics, optimization and inference of large electrical, mechanical and
chemical networks. Following Gil Strang, I demonstrate throughout that Linear Algebra is both a
tool for expressing these questions and for achieving, computing and representing their solutions.

The theory needed to resolve the questions of network equilibria, optimization and inference
is now well enshrined in the Fundamental Theorem of Linear Algebra, and it appears difficult
to improve on this approach. Regarding dynamics however there are two distinct paths to the
spectral theorem; one via zeros of the characteristic polynomial, det(zI − A), the other via poles
of the resolvent, (zI −A)−1. The first is common among introductory texts while the latter, to my
knowledge, has yet to succeed at that level – although, since the treatise of Kato, it is well known
to be considerably cleaner and more flexible. I feel strongly that students new to linear algebra can
grasp the resolvent more readily than the determinant. For, with eigenvalues defined as those z for
which (zI−A) does not have an inverse, the direct approach is to simply construct (zI−A)−1 and
observe the offending z. The construction of (zI − A)−1, say via Gauss–Jordan, is straightforward
though tedious. Once they understand the process however they may turn the tedium over to one
of a number of “symbolic algebra” routines. I make systematic use of the symbolic toolbox in
Matlab. By contrast, the indirect approach ignores the inverse and relies on the determinant
as a mere numerical test of invertibility. The approach via the resolvent comes however at the cost
of presuming familiarity with the residue theorem of complex integration. I see this rather as a
win–win situation, for the residue theorem is also key to making proper sense of the Inverse Laplace
and Fourier Transforms. Hence, our two brief chapters on complex variables pay multiple dividends.

The reader will find here an introductory course, an advanced course, an array of intermediate
courses, and a reference for self–study and/or use in advanced courses across Science, Engineering
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and Mathematics. The general audience introductory course, assuming only one year of calculus,
that I have taught to sophomores at Rice University for more than 20 years, is composed of the
following sections from the first 13 chapters:

Introductory Course

1. Orientation, §§1–3
2. Electrical Networks, §§1–2
3. Mechanical Networks, §§1–3
4. The Column and Null Spaces, §§1–3
5. The Fundamental Theorem and Beyond, §§1–3
6. Least Squares, §§1–4
7. Metabolic Networks, §§1–3
8. Dynamical Systems, §§1–4
9. Complex Numbers, Vectors and Functions, §§1–3
10. Complex Integration, §§1–3
11. The Eigenvalue Problem, §§1–2
12. The Hermitian Eigenvalue Problem, §§1–2
13. The Singular Value Decomposition, §§1–2.

This course stresses applications, methods and computation over theory and algorithms. As
the audience has been predominantly students of engineering and science I have used application
chapters to motivate theory chapters and then used this theory to both revisit old applications
and to embark on new ones. For example, the pseudo–inverse is invoked in Chapter 3 in order to
ignore the rigid body motion of a mechanical network. This provokes discussion of null and column
spaces but does not get resolved until the spectral representation and singular value decomposition
in Chapters 11–13. Similary, the resolvent and eigenvalues arise naturally in our consideration, in
Chapter 8, of dynamical systems but do not get resolved until the spectral representation is reached.
As such the material, including the exercises, in the early sections of the first 13 Chapters (with
the exception of Chapter 7 on Metabolic Networks) is highly integrated.

For audiences with either prior exposure to linear algebra or motivating applications one can
skim Chapter 1 and the early sections of Chapters of 2, 3 and 7 and use the time saved to delve
more deeply into the latter, more challenging, starred sections of Chapters 2–13 or perhaps into
the more advanced material of Chapters 14–16. The starred sections offer short courses in Convex
Analysis, §§5.4,7.6,12.6 and Fourier Analysis, §§9.5,9.6,10.4, 15.6.

The last three chapters, presuming a solid foundation in Linear Algebra, develop the Group,
Representation and Graph Theory that underly the exact solution to three exciting problems con-
cerning large networks. In particular: I provide a detailed derivation of the exact formulas, following
Chung and Sternberg, for the 60 eigenvalues that govern the electronic structure of the Buckyball,
and I provide detailed proofs that concrete constructions of Margulis achieve large girth in one case
and establish a family of expander graphs in the other.

Steve Cox
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1. Orientation

You have likely encountered vectors, and perhaps matrices in your introductory calculus and/or
physics courses. My goal in this chapter is to strengthen these encounters and so prepare you for the
applications, computations and theory to come. I begin in §1.1 with a careful presentation of the
basic objects – and the laws that govern their arithmetic combinations. I then introduce Matlab

in §1.2 as a means to visually explore the sense in which matrices transform vectors. I complete our
orientation in §1.3 with an introduction to the principle methods of proof used in Linear Algebra.
Throughout the chapter I introduce and reinforce concepts through examples and stress that you
gain confidence and expertise by generating examples of your own. The exercises at the end of the
chapter should help toward that end.

1.1. Objects

A vector is a column of real numbers, and is written, e.g.,

x =




2
−4
1


 . (1.1)

The vector has 3 elements and so lies in the class of all 3–element vectors, denoted, R3, where R

stands for “real”. We denote “is a member of” by the symbol ∈. So, e.g., x ∈ R3. We denote the
first element of x by x1, its second element by x2 and so on. For example, x2 = −4 in (1.1).

We will typically use the positive integer n to denote the ambient dimension of our problem, and
so will be working in Rn. The sum of two vectors, x and y, in Rn is defined elementwise by

z = x+ y, where zj = xj + yj, j = 1, . . . , n.

The multiplication of a vector, x ∈ Rn, by a scalar s ∈ R is defined elementwise by

z = sx, where zj = sxj , j = 1, . . . , n.

For example, (
2
5

)
+

(
1
−3

)
=

(
3
2

)
and 6

(
4
2

)
=

(
24
12

)
.

The most common product of two vectors, x and y, in Rn is the inner product,

xTy ≡
(
x1 x2 · · · xn

)




y1
y2
...
yn


 = x1y1 + x2y2 + · · ·+ xnyn =

n∑

j=1

xjyj. (1.2)

As xjyj = yjxj for each j it follows that xT y = yTx. For example,

(
10 1 3

)



8
2
−4


 = 10 · 8 + 1 · 2 + 3 · (−4) = 70. (1.3)

So, the inner product of two vectors is a number. The superscript T on the x on the far left of
Eq. (1.2) stands for transpose and, when applied to a column yields a row. Columns are vertical
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and rows are horizontal and so we see, in Eq. (1.2), that xT is x laid on its side. We follow Euclid
and measure the magnitude, or more commonly the norm, of a vector by the square root of the
sum of the squares of its elements. In symbols,

‖x‖ ≡
√
xTx =

√√√√
n∑

j=1

x2j . (1.4)

For example, the norm of the vector in Eq. (1.1) is
√
21. As Eq. (1.4) is a direct generalization of

the Euclidean distance of high school planar geometry we may expect that Rn has much the same
“look.” To be precise, let us consider the situation of Figure 1.1.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3 x

y

θ

Figure 1.1. A guide to interpreting the inner product.

We have x and y in R2 and

x =

(
x1
x2

)
=

(
1
3

)
and y =

(
y1
y2

)
=

(
4
1

)

and we recognize that both x and y define right triangles with hypotenuses ‖x‖ and ‖y‖ respectively.
We have denoted by θ the angle that x makes with y. If θx and θy denotes the angles that x and y
respectively make with the positive horizontal axis then θ = θx− θy and the Pythagorean Theorem
permits us to note that

x1 = ‖x‖ cos(θx), x2 = ‖x‖ sin(θx), and y1 = ‖y‖ cos(θy), y2 = ‖y‖ sin(θy),
and these in turn permit us to express the inner product of x and y as

xTy = x1y1 + x2y2

= ‖x‖‖y‖(cos(θx) cos(θy) + sin(θx) sin(θy))

= ‖x‖‖y‖ cos(θx − θy)

= ‖x‖‖y‖ cos(θ).

(1.5)

We interpret this by saying that the inner product of two vectors is proportional to the cosine of the
angle between them. Now given two vectors in say R8 we don’t panic, rather we orient ourselves by
observing that they together lie in a particular plane and that this plane, and the angle they make
with one another is in no way different from the situation illustrated in Figure 1.1. And for this
reason we say that x and y are perpendicular, or orthogonal, to one another whenever xTy = 0.
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In addition to the geometric interpretation of the inner product it is often important to be able
to estimate it in terms of the products of the norms. Here is an argument that works for x and y
in Rn. Once we know where to start, we simply expand

‖(yTy)x− (xTy)y‖2 = ((yTy)x− (xT y)y)T ((yTy)x− (xT y)y)

= ‖y‖4‖x‖2 − 2‖y‖2(xT y)2 + (xT y)2‖y‖2

= ‖y‖2(‖x‖2‖y‖2 − (xT y)2)

(1.6)

and then note that as the initial expression is nonnegative, the final expression requires (after taking
square roots) that

|xTy| ≤ ‖x‖‖y‖. (1.7)

This is known as the Cauchy–Schwarz inequality.
As a vector is simply a column of numbers, a matrix is simply a row of columns, or a column of

rows. This necessarily requires two numbers, the row and column indices, to specify each matrix
element. For example

A =

(
a11 a12 a13
a21 a22 a23

)
=

(
5 0 1
2 3 4

)
(1.8)

is a 2-by-3 matrix. The first dimension is the number of rows and the second is the number of
columns and this ordering is also used to address individual elements. For example, the element in
row 1 column 3 is a13 = 1. We will consistently use upper–case letters to denote matrices.

The addition of two matrices (of the same size) and the multiplication of a matrix by a scalar
proceed exactly as in the vector case. In particular,

(A +B)ij = aij + bij , e.g.,

(
5 0 1
2 3 4

)
+

(
2 4 6
1 −3 4

)
=

(
7 4 7
3 0 8

)
,

and

(cA)ij = caij , e.g., 3

(
5 0 1
2 3 4

)
=

(
15 0 3
6 9 12

)
.

The product of two commensurate matrices proceeds through a long sequence of inner products.
In particular if C = AB then the ij element of C is the product of the ith row of A and the jth
column of B. Hence, for two A and B to be commensurate it follows that each row of A must have
the same number of elements as each column of B. In other words, the number of columns of A
must match the number of rows of B. Hence, if A is m-by-n and B is n-by-p then the ij element
of their product C = AB is

cij =
n∑

k=1

aikbkj = A(i, :)B(:, k), (1.9)

where A(i, :) denotes row i of A and B(:, k) denotes column k of B. For example,

(
5 0 1
2 3 4

)


2 4
6 1
−3 4


 =

(
5 · 2 + 0 · 6 + 1 · (−3) 5 · 4 + 0 · 1 + 1 · 4
2 · 2 + 3 · 6 + 4 · (−3) 2 · 4 + 3 · 1 + 4 · (−4)

)
=

(
7 24
10 −5

)
.

In this case, the product BA is not even defined. If A is m-by-n and B is n-by-m then both AB
and BA are defined, but unless m = n they are of distinct dimensions and so not comparable. If
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m = n so A and B are square then we may ask if AB = BA ? and learn that the answer is typically
no. For example,

(
5 0
2 3

)(
2 4
6 1

)
=

(
10 20
22 11

)
6=
(
2 4
6 1

)(
5 0
2 3

)
=

(
18 12
32 3

)
. (1.10)

We will often abbreviate the awkward phrase “A is m-by-n” with the declaration A ∈ Rm×n. The
matrix algebra of multiplication, though tedious, is easy enough to follow. It stemmed from a
row-centric point of view. It will help to consider the columns. If A ∈ Rm×n and the jth column of
A is A(:, j) and x ∈ Rn then we recognize the product

Ax = [A(:, 1) A(:, 2) · · · A(:, n)]




x1
x2
...
xn


 = x1A(:, 1) + x2A(:, 2) + · · ·+ xnA(:, n), (1.11)

as a weighted sum of the columns of A. For example
(
2 3
1 4

)(
2
3

)
= 2

(
2
1

)
+ 3

(
3
4

)
=

(
13
14

)
. (1.12)

We illustrate this in Figure 1.2(A) and then proceed to illustrate in the second panel the transfor-
mation by this A of a representative collection of unit vectors.

0 2 4 6 8 10 12 14
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2a
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+3a

2
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4

Figure 1.2. (A) An illustration of the matrix vector multiplication conducted in Eq. (1.12).
Both A(:, 1) and A(:, 2) are plotted heavy for emphasis. We see that their multiples, by 2 and 3,
simply extend them, while their weighted sum simply completes the natural parallelogram. (B)
For a given x on the unit circle (denoted by a dot) we plot its transformation by the A matrix of
Eq. (1.12) (denoted by an asterisk). mymult1.m

A common goal of matrix analysis is to describe m-by-n matrices by many fewer than mn
numbers. The simplest such descriptor is the sum of the matrice’s diagonal elements. We call this
the trace and abbreviate it by

tr(A) ≡
n∑

i=1

aii. (1.13)

Looking for matrices to trace you scan Eq. (1.10) and note that 10 + 11 = 18 + 3 and you ask,
knowing that AB 6= BA, whether

tr(AB) = tr(BA) (1.14)
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might possibly be true in general. For arbitrary A and B in Rn×n we therefore construct tr(AB)

(AB)ii =
n∑

k=1

aikbki so tr(AB) =
n∑

i=1

n∑

k=1

aikbki,

and tr(BA)

(BA)ii =

n∑

k=1

bikaki so tr(BA) =

n∑

i=1

n∑

k=1

bikaki.

These sums indeed coincide, for both are simply the sum of the product of each element of A and
the reflected (interchange i and k) element of B.

In general, if A is m-by-n then the matrix that results on exchanging its rows for its columns is
called the transpose of A, denoted AT . It follows that AT is n-by-m and

(AT )ij = aji.

For example,
(
5 0 1
2 3 4

)T
=



5 2
0 3
1 4


 .

We will have frequent need to transpose a product, so let us contrast

((AB)T )ij =

n∑

k=1

ajkbki with (BTAT )ij =

n∑

k=1

ajkbki (1.15)

and so conclude that
(AB)T = BTAT , (1.16)

i.e., that the transpose of a product is the product of the transposes in reverse order.
Regarding the norm of a matrix it seems natural, on recalling our definition of the norm of

a vector, to simply define it as the square root of the sum of the squares of each element. This
definition, where A ∈ Rm×n is viewed as a collection of vectors, is associated with the name Frobenius
and hence the subscript in the definition of the Frobenius norm of A,

‖A‖F ≡
(

m∑

i=1

n∑

j=1

a2ij

)1/2

. (1.17)

As scientific progress and mathematical insight most often come from seeing things from multiple
angles we pause to note Eq. (1.17) may be seen as the trace of a product. In particular, with
B = AT and j = i in the general formula Eq. (1.15) we arrive immediately at

(AAT )ii =
n∑

k=1

a2ik.

As the sum over i is precisely the trace of AAT we have established the equivalent definition

‖A‖F = (tr(AAT ))1/2. (1.18)

5



For example, the Frobenius norm of the A in Eq. (1.8) is
√
55. Just as the vector norm can help us

bound (recall Eq. (1.7)) the inner product of two vectors, this matrix norm can help us bound the
product of a matrix and vector. More precisely, lets prove that

‖Ax‖ ≤ ‖A‖F‖x‖, (1.19)

for arbitrary A and x. To see this we complement Eq. (1.11) with a row representation

Ax =




A(1, :)x
A(2, :)x

...
A(m, :)x




and so
‖Ax‖ =

√
(A(1, :)x)2 + (A(2, :)x)2 + · · ·+ (A(m, :)x)2

≤
√

‖A(1, :)‖2‖x‖2 + ‖A(2, :)‖2‖x‖2 + · · ·+ ‖A(:, n)‖2‖x‖2
= ‖A‖F‖x‖,

where we have used Eq. (1.7) to conclude that each |A(j, :)x| ≤ ‖A(j, :)‖‖x‖. The simple rearrange-
ment of Eq. (1.19),

‖Ax‖
‖x‖ ≤ ‖A‖F ∀ x, (1.20)

has the nice geometric interpretation: “The matrix A can stretch no vector by more than ‖A‖F .”
We can reinforce this interpretation by returning to Figure 1.2 and noting that no vector in the
ellipse is longer than ‖A‖F =

√
30.

1.2. Computations

The objects of the previous section turn stale and are easily forgotten unless handled. We
are fortunate to work in a time in which both the tedium of their manipulation and the task of
illustrating our “findings” have been automated – leaving one’s imagination the only obstacle to
discovery.

To prepare you to “handle” your own objects we now present a brief introduction to Matlab

via experiments on the innocent looking

A =

(
1 2
0 1

)
. (1.21)

It is inert until it acts. Its action is spelled out in

Ax =

(
1 2
0 1

)(
x1
x2

)
=

(
x1 + 2x2

x2

)
(1.22)

but perhaps these symbols do not yet speak to you. To illustrate or animate this action we might
turn to devices like Figure 1.2 where we plot its deformation of the unit circle. Though this gives a
general sense of its influence it neglects to track the transformation of individual unit vectors. We
correct for this and display our findings in Figure 1.3, by marking 12 unit vectors in black and their
12 deformations, under A, in red.
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Figure 1.3. Illustration of the action, Ax in red, specified in Eq. (1.22) for the twelve x vectors
(black). That is, A takes the black 1 to the red 1, the black 2 to the red 2 and so on. Yes, both the
black 6 and black 12 remain unmoved by A. (mymult2.m)

Now we are really on to something – for this figure suggests so many new questions! But before
getting carried away lets take a careful look at the Matlab script, mymult2.m, that generated
Figure 1.3. For ease of reference we have numbered each line in our program.

1 A = [1 2; 0 1]; % the matrix

2 plot([-2 2],[0 0]) % plot the horizontal axis

3 hold on % plot future info in same figure

4 plot([0 0],[-2 2]) % plot the vertical axis

5 for j=1:12, % do what follows 12 times

6 ang = j*2*pi/12; % angle

7 x = [cos(ang); sin(ang)]; % a point on the unit circle

8 y = A*x; % transformed by A

9 text(x(1),x(2),num2str(j)) % place the counter value at x

10 s = text(y(1),y(2),num2str(j)); % place the counter value at y

11 set(s,’color’,’r’) % paint that last value red

12 end

13 hold off % let go of the picture

14 axis equal % fiddle with the axes

Our actor, A, gets line 1 billing. We specify matrices, and columns, between square brackets
and terminate each row (except the last) with a semicolon. Note that line 1 is not an equation but
rather an assignment. Matlab assigns what it finds to the right of = to the symbol it finds at the
left.

In line 2 we instruct Matlab to plot a line in the plane from (−2, 0) to (2, 0) using the default
color, blue. In line 4 we instruct Matlab to plot a blue line from (0,−2) to (0, 2).

In line 5 we enter a loop that terminates at line 12 when the counter, j, reaches its terminal
value. The colon is a powerful synonym for ‘to,’ in the sense that we read line 5 as “for j equal 1 to
12 execute lines 6 through 11.” You see that ang will then take on multiples of π/6 and that x will
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be the associated unit vector and y its transformation under A. In line 9 through 10 we take the
important step of actually marking our tracks by turning the counter value to a text string that is
then placed at (x(1),x(2)) in the default (black) color and then again at (y(1),y(2)), but this
time in red.

This script now belongs to your list of objects and as such invites experimentation. For example,
What must change to up the action from 12 to 24 players? Once you’ve learned this script we can
return to pondering Figure 1.3. Do you see that it shears the circle in the sense that it drags the
top half to the right and bottom half to the left while the equator remains unmoved? Does this
suggest that we could learn more be deforming shape other than circles? Though many shapes
come to mind we might miss something if we stick to regular objects. One of the key advantages
of computational experimentation is the ability to simultaneously observe the action upon many
random players. One difficulty with many is that it becomes more difficult to mark our tracks.
To get round this we will restrict our players to one half of the plane and paint each black while
painting red their action by A. So how should we divide the plane. The simple guess of top, x2 > 0,
and bottom, x2 < 0 does not seem to expose any new patterns and so one might instead tilt this
guess to say align with diagonals and so divide the plane into the two bow-ties

E = {x ∈ R2 : |x2| > |x1|} and F = {x ∈ R2 : |x1| > |x2|}. (1.23)

We illustrate our remarkable findings in Figure 1.4.
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Figure 1.4. (A) The deformation (red) by A of 2500 random vectors (black) from E. We surmise
that A takes E to F . (B) The deformation (red) by A of 2500 random vectors (black) from F .
(mymult3.m)

The difference in clarity between between panels (A) and (B) is striking – for these are drawn
from the same matrix. Panel (A) leads immediately, via Eq. (1.22), to the conjecture: if |x2| > |x1|
then |x1 + 2x2| > |x2|. We leave its proof (and more) to Exer. 1.3 in order that we may explicate
the script that generated Figure 1.4.

A = [1 2; 0 1]; % the matrix

for n=1:2500, % do the following 2500 times

x = randn(2,1); % generate a random point

[sax,ord] = sort(abs(x),1,’ascend’); % sort their magnitudes

x = x(ord); % reorder the elements

y = A*x; % transform via A

plot(x(1),x(2),’k.’) % mark the original point black

hold on % save this picture

plot(y(1),y(2),’r.’) % mark the transformed point red
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end

plot([-3 3],[3 -3]) % plot the NW-SE diagonal

plot([-3 3],[-3 3]) % plot the SW-NE diagonal

axis equal % fiddle with axes

hold off % let go of the picture

There are two key differences with the previous script. Our x vectors are now generated (and
reordered) at random and we are plotting points rather than texting strings. The x = randn(2,1)

places two random samples of the normal (or Gaussian, or bell–curve) distribution into the 2–by–1
vector x. In order to ensure that this x lies in E we sort its absolute values via sort in an ascending
fashion. The sort function returns two objects: sax, the sorted values and ord, the order in which
they appeared. More precisely if abs(x1)<abs(x2) then ord=[1 2] and x=x(ord) changes nothing
while if instead abs(x1)>abs(x2) then ord=[2 1] and x=x(ord) corrects their order. If instead we
wish to restrict x to F , to generate panel (B), we switch ascend to descend.

Now that we understand how matrices like A = [1 2; 0 1] act on objects like circles and bowties
we may inspect their action on much more complicated objects. Matlab has a large library of
stock images that we may manipulate. We present such a before and after in Figure 1.5.

Figure 1.5. An image of a camerman, normal and sheared by theAmatrix in (1.22). (mymult4.m)

The code that achieves this transformation is

P = imread(’cameraman.tif’); % read the image

[m,n] = size(P); % record its size

1 SP = 256*ones(m,2*m+n,’uint8’); % create a white canvas

for i=1:m % inspect every pixel

for j=1:n, % of the original image

2 SP(i,2*m+j-2*i) = P(i,j); % and shear it with the matrix A

end

end

imshow([P SP]) % display both images

We have numbered the “interesting lines.” Regarding line 1, Why does 256 designate white? and
Why have we added 2m columns? Regarding line 2, where exactly is A? You can discover the
answers by observing the result of small changes to these lines.
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1.3. Proofs

Regarding the proofs in the text, and more importantly in the exercises and exams, many
will be of the type that brought us Eq. (1.14) and Eq. (1.16). These are what one might call
confirmations. They require a clear head and may require a bit of rearrangement but as they
follow directly from definitions they do not require magic, clairvoyance or even ingenuity. As further
examples of confirmations let us prove (confirm) that

tr(A) = tr(AT ). (1.24)

It would be acceptable to say that “As AT is the reflection of A across its diagonal both A and
AT agree on the diagonal. As the trace of matrix is simply the sum of its diagonal terms we have
confirmed Eq. (1.24).” It would also be acceptable to proceed in symbols and say “from (AT )ii = aii
for each i it follows that

tr(AT ) =

n∑

i=1

(AT )ii =
∑

i=1

aii = tr(A).”

It would not be acceptable to confirm Eq. (1.24) on a particular numerical matrix, nor even on a
class of matrices of a particular size.

As a second example, lets confirm that

if ‖x‖ = 0 then x = 0. (1.25)

It would be acceptable to say that “As the sum of the squares of each element of x is zero then in
fact each element of x must vanish.” Or, in symbols, as

n∑

i=1

x2i = 0

we conclude that each xi = 0.
Our third example is a slight variation on the second.

if x ∈ Rn and xTy = 0 for all y ∈ Rn then x = 0. (1.26)

This says that the only vector that is orthogonal to every vector in the space is the zero vector.
The most straightforward proof is probably the one that reduces this to the previous Proposition,
Eq. (1.25). Namely, since xTy = 0 for each y we can simply use y = x and discern that xTx = 0
and conclude from Eq. (1.25) that indeed x = 0. As this section is meant to be an introduction to
proving let us apply instead a different strategy, one that replaces a proposition with its equivalent
contra–positive. More precisely, if your proposition reads “if c then d” then its contrapositive reads
“if not d then not c.” Do you see that a proposition is true if and only its contrapositive is true?
Why bother? Sometimes the contrapositive is “easier” to prove, sometimes it throws new light
on the original proposition, and it always expands our understanding of the landscape. So let us
construct the contra–positive of Eq. (1.26). As clause d is simply x = 0, not d is simply x 6= 0.
Clause c is a bit more difficult, for it includes the clause “for all,” that is often called the universal
quantifier and abbreviated by ∀. So clause c states xT y = 0 ∀ y. The negation of “some thing
happens for every y” is that “there exists a y for which that thing does not happen.” This “there
exists” is called the existential quantifier and is often abbreviated ∃. Hence, the contra–positive
of Eq. (1.26) is

if x ∈ Rn and x 6= 0 then ∃ y ∈ Rn such that xTy 6= 0. (1.27)
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It is a matter of taste, guided by experience, that causes one to favor (or not) the contra–positive
over the original. At first sight the student new to proofs and unsure of “where to start” may feel
that the two are equally opaque. Mathematics however is that field that is, on first sight, opaque to
everyone, but that on second (or third) thought begins to clarify, suggest pathways, and offer insight
and rewards. The key for the beginner is not to despair but rather to generate as many starting
paths as possible, in the hope that one of them will indeed lead to a fruitful second step, and on to
a deeper understanding of what you are attempting to prove. So, investigating the contra–positive
fits into our bigger strategy of generating multiple starting points and, even when a dead-end, is a
great piece of guilt–free procrastination.

Back to the problem at hand I’d like to point out two avenues “suggested” by Eq. (1.27). The
first is the old avenue – “take y = x” for then x 6= 0 surely implies that xTx 6= 0. The second I feel
is more concrete, more pedestrian, less clever and therefore hopefully contradicts the belief that one
either “gets the proof or not.” The concreteness I speak of is generated by the ∃ for it says we only
have to find one – and I typically find that easier to do than finding many or all. To be precise, if
x 6= 0 then a particular element xi 6= 0. From here we can custom build a y, namely choose y to
be 0 at each element except for the ith in which you set yi = 1. Now xTy = xi which, by not c, is
presumed nonzero.

As a final example lets prove that

if A ∈ Rn×n and Ax = 0 ∀ x ∈ Rn then A = 0. (1.28)

In fact, lets offer three proofs.
The first is a “row proof.” We denote row j of A by A(j, :) and note that Ax = 0 implies that

the inner product A(j, :)x = 0 for every x. By our proof of Eq. (1.26) it follows that the jth row
vanishes, i.e., A(j, :) = 0. As this holds for each j it follows that the entire matrix is 0.

Our second is a “column proof.” We interpret Ax = 0, ∀ x, in light of Eq. (1.11), to say that
every weighted sum of the columns of A must vanish. So lets get concrete and choose an x that is
zero in every element except the jth, for which we set xj = 1. Now Eq. (1.11) and the if clause in
Eq. (1.28) reveal that A(:, j) = 0, i.e., the jth column vanishes. As j was arbitrary it follows that
every column vanishes ans so the entire matrix is zero.

Our third proof will address the contrapositive,

if A 6= 0 ∈ Rn×n then ∃ x ∈ Rn such that Ax 6= 0. (1.29)

We now move concretely and infer from A 6= 0 that for some particular i and j that aij 6= 0. We
then construct (yet again) an x of zeros except we set xj = 1. It follows (from either the row or
column interpretation of Ax) that the ith element of Ax is aij . As this is not zero we have proven
that Ax 6= 0.

We next move on to a class of propositions that involve infinity in a substantial way. If there are
in fact an infinite number of claims we may use the Principle of Mathematical Induction, if it is a
claim about equality of infinite sets then we may use the method of reciprocal inclusion, while if it
is a claim about convergence of infinite sequences of vectors we may use the ordering of the reals.

The Principle of Mathematical Induction states that the truth of the infinite sequence of
statements {P (n) : n = 1, 2, . . .} follows from establishing that
(PMI1) P (1) is true.
(PMI2) if P (n) is true then P (n+ 1) is true, for arbitrary n.
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For example, let us prove by induction that
(
1 1
0 1

)n
=

(
1 n
0 1

)
n = 1, 2, . . . . (1.30)

We first check the base case, here Eq. (1.30) holds by inspection when n = 1. We now suppose it
holds for some n then deduce its validity for n + 1. Namely

(
1 1
0 1

)n+1

=

(
1 1
0 1

)(
1 1
0 1

)n
=

(
1 1
0 1

)(
1 n
0 1

)
=

(
1 n+ 1
0 1

)
.

Regarding infinite sets, the Principle of Mutual Inclusion states that two sets coincide if
each is a subset of the other. For example, given an x ∈ Rn lets consider the outer product matrix
xxT ∈ Rn×n and let us prove that the two sets

N1 ≡ {y : xT y = 0} and N2 ≡ {z : xxT z = 0}
coincide. If x = 0 both sides are simply Rn. So lets assume x 6= 0 and check the reciprocal
inclusions, N1 ⊂ N2 and N2 ⊂ N1. The former here looks to be the “easy” direction. For if xT y = 0
then surely xxT y = 0. Next, if xxT z = 0 then xTxxT z = 0, i.e., ‖x‖2xT z = 0 which, as x 6= 0
implies that xT z = 0.

Regarding Infinite Sequences {xn}∞n=1 ⊂ R we note that although the elements may change
erratically with n we may always extract a well ordered subsequence. For example, from the
oscillatory xn = (−1)n/n we may extract the decreasing xnk

≡ x2k = 1/(2k). More generally we
call a sequence monotone if either xn ≤ xn+1 for all n or xn ≥ xn+1 for all n. We state and prove
the general case:

Proposition 1.1. Given {xn}∞n=1 ⊂ R there exists a monotone subsequence {xnk
}∞k=1 ⊂ R.

Proof: Call xn a peak if xn > xm for all m < n. If our sequence has no peaks then it is already
monotone. If our sequence has an infinite number of peaks (as in our example above) at n1 < n2 <
· · · then xn1 ≥ xn2 ≥ · · · is a monotone subsequence. It remains to study sequences with at least
one but at most finitely many peaks. In this case, if xN is the peak with the biggest index then xn1

where n1 = N + 1 is not a peak and so ∃ and n2 > n1 such that xn2 ≥ xn1 . In the same fashion,
as n2 is not a peak ∃ and n3 > n2 such that xn3 ≥ xn2 . On repetition this procedure generates an
infinite monotone subsequence. End of Proof.

The great attraction of (bounded) monotone sequences is that they must converge to their
smallest or largest value. To make this precise we call u an upper bound for {xn} if xn ≤ u for
all n and we denote by xu the least upper bound. For example, 1 is the least upper bound of
{1− 1/n}n.

Proposition 1.2. If {xn}n is monotonically nondecreasing and xu is its least upper bound then

lim
n→∞

xn = xu.

That is, given any ε > 0 ∃ N > 0 such that |xn − xu| ≤ ε ∀ n > N . We often abbreviate this as
xn → xu.

12



Proof: Given ε > 0 if there exists an N > 0 such that xn ≤ xu − ε for n > N then xu − ε/2 is an
upper bound less than xu, contrary to its definition. End of Proof.

In a similar fashion we call ℓ a lower bound for {xn} if xn ≥ ℓ for all n and we denote by xℓ

the greatest lower bound. For example, 0 is the greatest lower bound of {1/n}n. If {xn} is
nonincreasing then xn → xℓ. Combining these last two propositions we find that every bounded
sequence of real numbers has a convergent subsequence. Our argument in fact translates nicely to
vectors.

Proposition 1.3. If {xj}j ⊂ Rn and there exists a finite M for which ‖xj‖ ≤ M for all j then
there exists a subsequence {xjk} ⊂ {xj}j and an x ∈ Rn such that xjk → x. That is given any
ε > 0 ∃ N > 0 such that ‖xjk − x‖ ≤ ε ∀ jk > N .

Proof: We note the elements of xj by xj(1) through xj(n). As {xj(1)}j is a bounded sequence in
R it has a subsequence, {xjk(1)}j, that converges to a number that we label x(1). As {xjk(2)}j
is a bounded sequence in R it has a subsequence, {xjkl(2)}l, that converges to a number that we
label x(2). Moreover, this new subsequence does not affect the convergence of the first element. In
particular, xjkl

(1) → x(1) as l → ∞. We now continue to extract a subsequence from the previous
sequence until we have exhausted all n dimensions. End of Proof.

Our first application of this is to an alternate notion of matrix norm. We observed in Eq. (1.20)
that the Frobenius norm is larger than the biggest stretch. The word “biggest” suggest that we
are looking for the least upper bound. This three word phrase is a bit awkward and so is often
rephrased as supremum which itself it abbreviated to sup. All this suggests that

‖A‖ ≡ sup
‖x‖=1

‖Ax‖ (1.31)

is worthy of study. By definition there exists a sequence {xj}j of unit vectors for which ‖Axj‖ →
‖A‖. By Prop. 1.3 there exists a convergent subsequence, xjk → x̃. It follows that ‖xjk‖ → ‖x̃‖
and so ‖x̃‖ = 1. In addition,

‖Axjk − Ax̃‖ = ‖A(xjk − x̃)‖ ≤ ‖A‖F‖xjk − x̃‖

permits us to conclude that Axjk → Ax̃ and so ‖Axjk‖ → ‖Ax̃‖ and recalling ‖Axjk‖ → ‖A‖ we
conclude that ‖Ax̃‖ = ‖A‖. The upshot is that the supremum in Eq. (1.31) is actually attained.
We distinguish this fact by writing

‖A‖ ≡ max
‖x‖=1

‖Ax‖. (1.32)

By definition we know that ‖A‖ ≤ ‖A‖F for every matrix. A simple example that shows up the
disparity involves In, the identity matrix on Rn. Please confirm that ‖In‖ = 1 while ‖In‖F =

√
n.

1.4. Notes and Exercises

For thousands more worked examples I recommend Lipschutz (1989). Higham and Higham
(2005) is an excellent guide to Matlab. For a more thorough guide to proofs please see Velleman
(2006).
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1. Consider the matrix

A =

(
0 1
−1 0

)
. (1.33)

Evaluate the product Ax for several choices of x. Sketch both x and Ax in the plane for several
carefully marked x and explain why A is called a “rotation.” Argue, on strictly geometric
grounds, why A5 = A.

2. Consider the matrix

A =

(
0 −1
−1 0

)
. (1.34)

Evaluate the product Ax for several choices of x. Sketch both x and Ax in the plane for several
carefully marked x and explain why A is called a “reflection.” Argue, on strictly geometric
grounds, why A3 = A.

3. We will consider the action of

A =

(
1 2
0 1

)
and B =

(
1 0
2 1

)
, (1.35)

on the bow-ties, E and F , of Eq. (1.23).

(a) Show that if x ∈ E then Ax ∈ F ,

(b) Show that if x ∈ F then Bx ∈ E.

(c) Prove by induction that

An =

(
1 2n
0 1

)
and Bn =

(
1 0
2n 1

)
,

for positive integer n.

(d) Use (c) to generalize (a) and (b). That is, show that if x ∈ E then Anx ∈ F while if x ∈ F
then Bnx ∈ E for all positive integer n.

4. We will make frequent use of the identity matrix, I ∈ Rn×n, comprised of zeros off the
diagonal and ones on the diagonal. In symbols, Iij = 0 if i 6= j, while Iii = 1. Prove the two
propositions, if A ∈ Rn×n then AI = IA = A. The identity also gives us a means to define
the inverse of a matrix. One (square) matrix is the inverse of another (square) matrix if their
product is the identity matrix. Please show that

A−1 =

(
1 −2
0 1

)
and B−1 =

(
1 0
−2 1

)
, (1.36)

are the inverses of the A and B matrices of Eq. (1.35).

5. Write a Matlab program to investigate the shear of the integer diamond by the A and B
matrices, Eq. (1.35), and their inverses, Eq. (1.36). More precisely, write a program that
generates Figure 1.6.

14



Figure 1.6. Shearing the integral diamond. (Left) The labels are at integral points, 1 =
(−2, 0), 2 = (−1,−1), 3 = (−10), 4 = (−1, 1) and so on. (Center) Transformation by A
(black) and A−1 (red) of the points in panel (Left). (Right) Transformation by B (black) and
B−1 (red) of the points in panel (Left).

6. We can view, see Figure 1.7(A), vector sums as parallelogram generators. Please show that
the area of this parallelogram is ad− bc. Show all of your work.

(0,0)

(a,b)

(c,d)

(a+c,b+d)
(A)

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

(B)

Figure 1.7. (A) The vectors (a, b) and (c, d) drawn from the origin, (0, 0), sum to the fourth
vertex of a parallelogram. (B) A black square and its deformation (red diamond) by the matrix
in (1.37)

7. Show that

A =

(
2 −1
−1 2

)
(1.37)

takes the black square to the red diamond in Figure 1.7(B). Use the previous exercise to
compute the area of the red diamond.

8. Each of the following chapters will demonstrate the fundamental role that matrices play in
modeling the world. Perhaps one of the simplest contexts is in the field of information retrieval.
Here one has m “terms” and n “documents” and builds a so–called term-by-document matrix
A where aij is the number of times that term i appears in document j. In Figure 1.8(A) below
we depict such a matrix where the documents are the 81 chapters of the Tao Te Ching and our
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10 terms are heaven, virtue, nature, life, knowledge, understand, fear, death, good, and right.
This matrix is then used to process new queries. For example, if the disciple is looking for the
chapters most expressive of virtue and good then, as these are the second and ninth of our our
terms we build the query vector

q = (0 1 0 0 0 0 0 0 1 0) (1.38)

and search for means to compare this to the columns of A. The standard approach is to exploit
the geometric interpretation (recall Eq. (1.5)) of the inner product and to so rank the chapters
by the cosine of the angle they make with the query. More precisely, for the jth document we
compute

cos(θj) =
qaj

‖q‖‖aj‖
. (1.39)

and present these scores in Figure 1.8(B). As small angles correspond to values of cosine near 1
our analysis would direct the disciple to chapter 49 of the Tao Te Ching. Typically a threshold
is chosen, e.g., 0.8, and a rank ordered list of all documents that exceed that threshold is
returned.

Please change tao.m to find the chapter most expressive of heaven, nature and knowledge.
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Figure 1.8. Query matching. (A) The 10×81 term-by-document matrix for the Tao Te Ching,
illustrated with the help of the Matlab command imagesc. (B) The cosine scores associated
with the query in Eq. (1.38) as expressed in Eq. (1.39). tao.m

9. Prove that matrix multiplication is associative, i.e., that (AB)C = A(BC).

10. Prove that if x and y lie in Rn and A ∈ Rn×n then

xTAy = yTATx.

Hint: The left side is a number. Now argue as we did in achieving Eq. (1.16).

11. Suppose that A ∈ Rn×n and xTAx = 0 ∀ x ∈ Rn. Does this imply that A = 0? If so, prove it.
If not, offer a counterexample.

12. Prove that tr(A+B) = tr(A) + tr(B).

13. Use Eq. (1.14) to prove that the fundamental commutator relation of Quantum Mechanics,

AB − BA = I,

can not hold for matrices.
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14. Prove that tr(uvT ) = uTv for u and v in Rn.

15. Construct a nonzero A ∈ R2×2 for which A2 = 0.

16. A matrix that equals its transpose is called symmetric. Suppose S = ATGA where A ∈ Rm×n

and G ∈ Rm×m. Prove that if G = GT then S = ST .

17. Please confirm that the polarization formula

‖u+ v‖2 − ‖u− v‖2 = 4uTv, (1.40)

holds for all u and v in Rn.

18. Establish the triangle inequality

‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀ x, y ∈ Rn. (1.41)

First draw this for two concrete planar x and y and discuss the aptness of the name. Then, for
the general case expand ‖x+ y‖2, invoke the Cauchy–Schwarz inequality, Eq. (1.7), and finish
with a square root.

19. The other natural vector product is the outer product. Note that if x ∈ Rn then the outer
product of x with itself, xxT , lies in Rn×n. Please prove that ‖xxT ‖F = ‖x‖2.

20. The outer product is also a useful ingredient in the Reflection Matrix

H = I − 2xxT , (1.42)

associated with the unit vector x.

(a) How does H transform vectors that are multiples of x?

(b) How does H transform vectors that are orthogonal to x?

(c) How does H transform vectors that are neither colinear with nor orthogonal to x? Illustrate
your answers to (a-c) with a careful drawing.

(d) Confirm that HT = H and that H2 = I.

21. There is a third way of computing the product of two vectors in R3, perhaps familiar from
vector calculus. The cross product of u and v is written u × v and defined as the matrix
vector product

u× v ≡ X(u)v =




0 −u3 u2
u3 0 −u1
−u2 u1 0





v1
v2
v3


 =



−u3v2 + u2v3
u3v1 − u1v3
−u2v1 + u1v2




(a) How does X(u) transform vectors that are multiples of u?

(b) How does X(u) transform vectors that are orthogonal to u?

(c) How does X(u) transform vectors that are neither colinear with nor orthogonal to u? Illus-
trate your answers to (a-c) with a careful drawing. You may wish to use the Matlab function
cross.

(d) Confirm that X(u)T = −X(u) and that X(u)2 = uuT − ‖u‖2I.
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(e) Use (d) to derive
‖u× v‖2 = ‖u‖2‖v‖2 − (uTv)2.

(f) If θ is the angle between u and v use (e) and (1.5) to show that

‖u× v‖ = ‖u‖‖v‖| sin θ|.

(g) Use (f) and Figure 1.9(A) to conclude that ‖u × v‖ is the area (base times height) of the
parallelogram with sides u and v.

(h) Use (g) and Figure 1.9(B) to conclude that |wT (u × v)| is the volume (area of base times
height) of the parallelepiped with sides u, v and w. Hint: Let u and v define the base. Then
u× v is parallel to the height vector obtained by drawing a perpendicular from w to the base.

0
θ

u

v

u+v
(A)

u
v

w

(B)
u×v

Figure 1.9. (A) Parallelogram. (B) Parallelepiped.

22. Show that if A ∈ Rm×n and B ∈ Rn×p then ‖AB‖F ≤ ‖A‖F‖B‖F . Hint: Adapt the proof of
Eq. (1.19).

23. Via experimentation with small n arrive (show your work) at a formula for fn in


1 1 0
0 1 1
0 0 1



n

=



1 n fn
0 1 n
0 0 1




and prove, via induction, that your formula holds true for all n.

24. Suppose that {aj : j = 0,±1,±2, . . .} is a doubly infinite sequence. Prove, via induction, that

n∑

j=0

n∑

k=0

aj−k =
n∑

m=−n
(n+ 1− |m|)am. (1.43)

25. For the matrix of (1.37) compute, by hand and showing all work, that ‖A‖ = 3 and ‖A‖F =√
10. Hint: For the former, choose x = (cos(θ), sin(θ))T and show that ‖Ax‖2 = 5 −

8 cos(θ) sin(θ). Now take a derivative in order to find the θ that gives the largest ‖Ax‖.
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2. Electrical Networks

The analysis and design of large electrical networks has always been conducted in the language of
Linear Algebra. In fact, Gustav Kirchhoff, the law–giver of electrical circuit theory, had a significant
impact on the creation of what we now call Linear Algebra.

We here develop his laws and algebra in the simple, but important, setting of nerve conduction.
In §2.1 we construct a physical model of a neuron as a network of resistors and then build a
mathematical model to predict its response to current injection. In §§2.2 and 2.3 we extend both
the physical model and mathematical theory to encompass batteries and operational amplifiers. In
each case we arrive at a linear system of equations for the internal (unknown) voltages and currents
in terms of the known external voltages and currents. We develop this linear system in a general
four part scheme known as a Strang Quartet.

2.1. Neurons and the Strang Quartet

The human brain is an electrical network of 100 billion neurons. A neuron is a spatially extended
cell that, based upon inputs from its ten thousand upstream neighbors, signals its downstream
neighbors. A neuron’s spatial extent is typically idealized as simply a cylinder of radius a and
length ℓ that conducts electricity both along its length and across its lateral membrane. Though
we shall, in subsequent chapters, delve more deeply into the biophysics, here, in our first outing, we
stick to its purely resistive properties. These are expressed via two quantities: ρi, the resistivity,
in Ω cm, of the cytoplasm that fills the cell, and ρm, the resistivity in Ω cm2 of the cell’s lateral
membrane.

R

R

R

R

R
i

i

i

m

m

R m

Figure 2.1. A 3 compartment model of a neuron.

Although current surely varies from point to point along the neuron it is hoped that these variations
are regular enough to be captured by a multicompartment model. By that we mean that we choose
a number N and divide the neuron into N segments each of length ℓ/N . Denoting a segment’s axial
and membrane resistance by

Ri =
ρiℓ/N

πa2
and Rm =

ρm
2πaℓ/N

respectively, we arrive at the lumped circuit model of Figure 2.1. For a neuron in a dish we
may assume a constant extracellular potential, e.g., zero. We accomplish this by grounding the
extracellular nodes, see Figure 2.2.
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Figure 2.2. A rudimentary neuronal circuit model.

This figure also incorporates the exogenous disturbance, a current stimulus between ground and the
left end of the neuron. Our immediate goal is to compute the resulting currents through each resistor
and the potential at each of the nodes. Our long–range goal is to provide a modeling methodology
that can be used across the engineering and science disciplines. As an aid to computing the desired
quantities we give them names. With respect to Figure 2.3 we label the vector of potentials

x =




x1
x2
x3
x4


 and vector of currents y =




y1
y2
y3
y4
y5
y6



.

We have also (arbitrarily) assigned directions to the currents as a graphical aid in the consistent
application of the basic circuit laws.
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Figure 2.3 The fully dressed circuit model.

We incorporate the circuit laws in a modeling methodology that takes the form of a Strang

Quartet,

(S1) Express the voltage drops via e = −Ax.
(S2) Express Ohm’s Law via y = Ge.
(S3) Express Kirchhoff’s Current Law via ATy = −f .
(S4) Combine the above into ATGAx = f .

The A in (S1) is the node–edge incidence matrix – it encodes the network’s connectivity. The G
in (S2) is the diagonal matrix of edge conductances – it encodes the physics of the network. The f
in (S3) is the vector of current sources – it encodes the network’s stimuli. The culminating ATGA
in (S4) is the symmetric matrix whose inverse, when applied to f , reveals the vector of potentials,
x. In order to make these ideas our own we must work many, many examples.
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2.2. Resistor Nets with Current Sources and Batteries

With respect to the circuit of Figure 2.3, in accordance with step (S1), we express the six
potentials differences (always tail minus head)

e1 = x1 − x2

e2 = x2

e3 = x2 − x3

e4 = x3

e5 = x3 − x4

e6 = x4

Such long, tedious lists cry out for matrix representation, to wit

e = −Ax where A =




−1 1 0 0
0 −1 0 0
0 −1 1 0
0 0 −1 0
0 0 −1 1
0 0 0 −1



,

where the reason for the leading minus sign will be revealed in the next section.
Step (S2), Ohm’s law, states that the current along an edge is equal to the potential drop across

the edge divided by the resistance of the edge. In our case,

yj = ej/Ri, j = 1, 3, 5 and yj = ej/Rm, j = 2, 4, 6

or, in matrix notation,

y = Ge where G =




1/Ri 0 0 0 0 0
0 1/Rm 0 0 0 0
0 0 1/Ri 0 0 0
0 0 0 1/Rm 0 0
0 0 0 0 1/Ri 0
0 0 0 0 0 1/Rm



.

Step (S3), Kirchhoff’s Current Law, states that the sum of the currents into each node must be
zero. In our case

i0 − y1 = 0

y1 − y2 − y3 = 0

y3 − y4 − y5 = 0

y5 − y6 = 0

or, in matrix terms

By = −f where B =




−1 0 0 0 0 0
1 −1 −1 0 0 0
0 0 1 −1 −1 0
0 0 0 0 1 −1


 and f =




i0
0
0
0



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Turning back the page we recognize in B the transpose of A. Calling it such, we recall our main
steps

e = −Ax, y = Ge, and ATy = −f.
On substitution of the first two into the third we arrive, in accordance with (S4), at

ATGAx = f. (2.1)

This is a linear system of four simultaneous equations for the 4 unknown potentials, x1 through
x4. As you may know, the system Eq. (2.1) may have either 1, 0, or infinitely many solutions,
depending on f and ATGA. We shall devote chapters 3 and 4 to a careful analysis of the previous
sentence. For now, we simply invoke the Matlab backslash command and arrive at the response
depicted in Figure 2.4.
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Figure 2.4. Results of a 16 compartment neuronal simulation. The voltage, as a function of
distance from the left end, computed from (2.1) with i0 = 0.001 mA (milliAmperes). cab1.m.

Once the structure of the constituents in the fundamental system Eq. (2.1) is determined it is an
easy matter to implement it, as we have done in cab1.m, for an arbitrary number of compartments.
In Figure 2.4 we see that the stimulus at the neuron’s left end produces a depolarization there that
then attenuates with distance from the site of stimulation.
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Figure 2.5 Circuit model with batteries associated with the rest potential.

We have seen how a current source may produce a potential difference across a neuron’s mem-
brane. We note that, even in the absence of electrical stimuli, there is always a difference in potential
between the inside and outside of a living cell. In fact, this difference is one of the biologist’s defini-
tion of ‘living.’ Life is maintained by the fact that the neuron’s interior is rich (relative to the cell’s
exterior) in potassium ions and poor in sodium and chloride ions. These concentration differences
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establish a resting potential difference, Em, across the cell’s lateral membrane. The modified circuit
diagram is given in Figure 2.5.

The convention is that the potential difference across the battery is Em. As the bottom terminal
of each battery is grounded it follows that the potential at the top of each battery is Em. Revisiting
steps (S1–4) of the Strang Quartet we note that in (S1) the even numbered voltage drops are now

e2 = x2 −Em, e4 = x3 − Em and e6 = x4 −Em.

We accommodate such things by generalizing (S1) to

(S1’) Express the voltage drops as e = b− Ax where b is the vector that encodes the batteries.

No changes are necessary for (S2) and (S3). The final step now reads,

(S4’) Combine (S1’), (S2) and (S3) to produce

ATGAx = ATGb+ f. (2.2)

This is the general form for a resistor network driven by current sources and batteries.

Returning to Figure 2.5 we note that

b = −Em[0 1 0 1 0 1]T and ATGb = (Em/Rm)[0 1 1 1]T .

To build and solve Eq. (2.2) requires only minor changes to our old code. The new program is
called cab2.m and results of its use are indicated in Figure 2.6.
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Figure 2.6. Results of a 16 compartment simulation with batteries, Em = −70 mV . cab2.m

2.3. Operational Amplifiers∗

The true work horse of analog circuitry is the operational amplifier, or op-amp for short. It
is an ingenious blend of nonlinear circuit elements (transistors) that yields straightforward linear
combinations of its inputs. As resistor nets dissipate energy opamps actually increase energy.
More precisely, they transmit energy to the circuit – for they are active devices that require (like
neurons) their own energy source. The opamp symbol and a standard configuration are illustrated
in Figure 2.7
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Figure 2.7. (A) An operational amplifier has two input terminals, labeled ±, and one output
terminal. It also has two terminals for its power supply. In the future we will assume that all opamps
are powered and ignore these connections. (B) This circuit, called the “noniverting amplifier,”
magnifies its input by a factor of (1 +R2/R1). See Eq. (2.3).

The laws that govern the operation of opamps are

(OA1) The potentials at the two input terminals coincide, i.e., are equal to one another.
(OA2) The current entering the opamp at each input terminal is zero.

We now illustrate these laws in small and large networks. Starting with Figure 2.7 (OA1) dictates
that x1 = V while (OA2) that y1 = y2. Together these two state that

0− V

R1
=
V − x2
R2

and so

x2 = (1 +R2/R1)V. (2.3)

This result causes us to speak of (1 +R2/R1) as the gain of circuit Figure 2.7(B). As R1 → 0 the
algebra suggests that we might achieve infinite gain. In reality, the opamp is typically powered, as
in Figure 2.7(A) by ±Vpow volts and as such we can not get more than we put in. More precisely,
(2.3) is actually

x2 =





−Vpow if (1 +R2/R1)V < −Vpow
(1 +R2/R1)V if − Vpow ≤ (1 +R2/R1)V ≤ Vpow
Vpow if (1 +R2/R1)V > Vpow.

(2.4)

In order to extend our analysis to larger circuits we need to reflect both on what we did and what
we did not do en route to Eq. (2.3). What we did was to invoke the opamp rules (OA1) and (OA2).
What we did not do was to balance current at the output terminal, for an opamp (being a powered
device) does not conserve current between its input and output terminals. It is worth stating this:

(OA3) Do not apply KCL at the output terminal of any opamp.

Fortunately these rules do balance in the mathematical sense. That is, though they modify one step
of the Strang Quartet they still lead to a consistent set of equations for all unknown potentials. To
illustrate this we consider the differential amplifier of Figure 2.8

24



V
2

V
1

R
1

y
1

R
3

y
3

R
4

y
4

R
2

y
2

x
1

x
1

x
2

Figure 2.8. A differential amplifier. That is, a circuit that amplifies the difference V1 − V2.

Regarding the circuit of Figure 2.8, following (OA1) we have labeled both input terminals with
the same unknown potential. The Strang Quartet begins, as usual, by expressing the voltage drops

e1 = V2 − x1

e2 = x1 − x2

e3 = V1 − x1

e4 = 0− x1

as e = b−Ax, where b =




V2
0
V1
0


 and A =




1 0
−1 1
1 0
1 0


 .

The next step, y = Ge, also proceeds, as before, with G = diag(G1, G2, G3, G4) where Gj ≡ 1/Rj.
Unlike the standard step of current balance we ignore the output terminal and yet balance currents
at both input terminals even though their potentials are identical. In particular, current balance
now takes the form

y3 + y4 = 0

y1 − y2 = 0
i.e., By = 0 where B =

(
0 0 1 1
1 −1 0 0

)
.

We note at once that B 6= AT but proceed to unpack By = 0 to BGe = 0 and then BG(b − Ax),
i.e.,

BGAx = BGb. (2.5)

In the case of Figure 2.8 we find

BGA =

(
G3 +G4 0
G1 +G2 −G2

)
and BGb =

(
G3V1
G1V2

)
.

We can read off the solution to this triangular system

x1 =
G3

G3 +G4
V1 and x2 = (1 +G1/G2)x1 − (G1/G2)V2. (2.6)

It follows that x2 is a weighted difference of the two input voltages. We can simplify the algebra on
choosing R1 = R3 and R2 = R4 = ΓR1, for then Eq. (2.6) yields

x2 = Γ(V1 − V2), (2.7)

and we recognize Figure 2.8 as a differential amplifier with gain Γ.
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2.4. Notes and Exercises

The modular, 4 part, approach to building mathematical models is due to Strang (2007). For a
more thorough introduction to neuronal modeling please consult Gabbiani and Cox (2010).

1. In order to refresh your matrix-vector multiply skills please calculate, by hand, the product
ATGA in the 3 compartment case and write out the 4 equations in Eq. (2.1). The second
equation should read

(−x1 + 2x2 − x3)/Ri + x2/Rm = 0. (2.8)

2. Let us work right to left in the circuit of Figure 2.3.

(a) Deduce from KCL that y5 = y6 implies

x4 =
Rm

Ri +Rm
x3 and y5 =

x3
Ri +Rm

.

(b) Deduce from KCL that y3 − y4 = y5 implies

x3 =
Rm(Ri +Rm)

R2
i + 3RiRm +R2

m

x2 and y3 = x2
Ri + 2Rm

R2
i + 3RiRm +R2

m

.

(c) Deduce from KCL that y1 − y2 = y3 implies

x2 =
R3
m + 3RiR

2
m +R2

iRm

5RmR2
i + 6RiR2

m +R3
m +R3

i

x1

(d) Deduce from i0 = y1 that

x1 = i0
R3
i + 5R2

iRm + 6RiR
2
m +R3

m

(Ri +Rm)(Ri + 3Rm)

and finally that the cell’s input resistance is

Rin ≡ x1
i0

=
R3
i + 5R2

iRm + 6RiR
2
m +R3

m

(Ri +Rm)(Ri + 3Rm)

3. The pattern in the leading term of Eq. (2.8), twice self minus the contribution of the immediate
neighbors, appears naturally when differentiating functions. In particular, please confirm that

f(z+h) = f(z)+f ′(z)h+f ′′(z)h2/2+O(h3) and f(z−h) = f(z)−f ′(z)h+f ′′(z)h2/2+O(h3)

where O(h3) indicates terms of order h3. Now add these two expressions and arrive at

f ′′(z) =
f(z − h)− 2f(z) + f(z + h)

h2
+O(h3) (2.9)

4. We began our discussion with the ‘hope’ that a multicompartment model could indeed ade-
quately capture the neuron’s true potential and current profiles. In order to check this one
should run cab1.m with increasing values of N until one can no longer detect changes in the
computed potentials.
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(a) Please run cab1.m with N = 8, 16, 32 and 64. Plot, as in Figure 2.9, all of the potentials
on the same graph, using different marker types for each. (You may wish to alter cab1.m so
that it accepts N and marker as arguments and then call it from a driver that uses hold and
appends a legend).
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Figure 2.9. Apparent convergence of the cable response as the number of compartments grows.

Let us now interpret this convergence. The main observation is that the difference equation,
Eq. (2.8), approaches a differential equation. We can see this by noting that

dz ≡ ℓ/N

acts as a spatial ‘step’ size and that xk, the potential at (k − 1)dz, is approximately the value
of the true potential at (k − 1)dz. In a slight abuse of notation, we denote the latter

x((k − 1)dz).

Applying these conventions to Eq. (2.8) and recalling the definitions of Ri and Rm we see
Eq. (2.8) become

πa2

ρi

−x(0) + 2x(dz)− x(2dz)

dz
+

2πadz

ρm
x(dz) = 0,

or, after multiplying through by ρm/(πadz),

aρm
ρi

−x(0) + 2x(dz)− x(2dz)

dz2
+ 2x(dz) = 0.

We note that a similar equation holds at each node (save the ends) and that as N → ∞ and
therefore dz → 0 we arrive (thanks to Eq. (2.9)) at

d2x(z)

dz2
− 2ρi
aρm

x(z) = 0. (2.10)

(b) Recall that 2 cosh(t) = exp(t)+exp(−t) and 2 sinh(t) = exp(t)−exp(−t), set µ ≡ 2ρi/(aρm)
and show that

x(z) = α sinh(
√
µz) + β cosh(

√
µz) (2.11)

satisfies Eq. (2.10) regardless of α and β.
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We shall determine α and β by paying attention to the ends of the neuron. At the near end
we find

πa2

ρi

x(0)− x(dz)

dz
= i0,

which, as dz → 0 becomes

dx(0)

dz
= −ρii0

πa2
. (2.12)

At the far end, we interpret the condition that no axial current may leave the last node to
mean

dx(ℓ)

dz
= 0. (2.13)

(c) Substitute Eq. (2.11) into Eq. (2.12) and Eq. (2.13) and solve for α and β and write out
the final x(z).

(d) Substitute into x the ℓ, a, ρi and ρm values used in cab1.m, plot the resulting function
(using, e.g., ezplot) and compare this to the plot achieved in part (a).

(e) One distinct advantage of this exact solution is that it permits us to express the neuron’s
input resistance Rin ≡ x(0)/i0 in terms of its fundamental material and geometric constants.
Use part (c) to arrive at

Rin =

√
ρiρm/2 cosh(

√
µℓ)

πa3/2 sinh(
√
µℓ)

.

Prove that this is an increasing function of ℓ.

5. Suppose that we specify the potential, rather than inject current, at the neuron’s left end...

6. Alter cab2.m to inject current at a specified node. Reproduce Figure 2.10.
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Figure 2.10. Response of a 16 node cable, with batteries, to stimulus at node 9.

7. Neurons are rarely straight. Instead, to maximize their contact with neighbors they branch,
as in the fork of Figure 2.11. Derive the associated node–edge incidence matrix.
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Figure 2.11. A compartmental model of a forked neuron. In order to reduce clutter we have
neglected to orient the edges. To derive the incidence matrix please use rightward pointing
arrows on the axial resistances and ground pointing arrows on the membrane conductances.

8. The circuit depicted in Figure 2.12 is known as a Wheatstone Bridge .
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Figure 2.12. A wheatstone bridge. As we vary the odd resistance, R3, we will arrive at a
variable output voltage, x1 − x2.

(a) Carefully derive the equilibrium equations for the potentials x1 and x2.

(b) Solve the equations in (a) for

x1 = V1/2 and x2 = V1
R

R +R3

.

(c) If V ≡ x1 − x2 is now the voltage output of the bridge, show that it varies from −V1/2 to
V1/2 as R3 climbs from 0 to ∞.

9. The Instrumentation Amplifier of Figure 2.13(A) is an improvement over the differential am-
plifier
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Figure 2.13. (A) The Instrumentation Amplifier. (B) The Summer.

Construct and solve Eq. (2.5) and conclude that

x4 = (1 + 2R3/R4)(V2 − V1).

10. The circuit of Figure 2.13(B) is deemed a summer. Construct and solve Eq. (2.5) and conclude
that

x2 =

4∑

j=1

γjVj where γj =
1 +G6/G7

G1 +G2 +G3 +G4 +G5
Gj.

11. Note that our Summer and Differential Amplifier circuits are actually computing inner products
of their inputs. As matrix vector multiplication is nothing more than a vector of inner products,
we may now design circuits to implement matrix multiplication. Please combine two differential
amplifiers to arrive at a circuit that performs x = SV where

S =

(
2 −1
−1 2

)
and V =

(
V1
V2

)
.

Draw the circuit and specify all resistances.
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3. Mechanical Networks

We derive the equations of mechanical equilibrium by developing and applying the matrix forms
of Hooke’s Law and Conservation of Force. We solve these equations, by hand, via Gaussian
Elimination. This concrete elementary scheme reveals the importance of pivots and leads us to
the Gauss–Jordan method of matrix inversion, the LU method of matrix factorization, and to the
important notion of matrix determinant. In the final section we discover that the matrix governing
mechanical equilibrium is positive definite. We then demonstrate that force balance is equivalent
to the minimization of potential energy. Throughout the chapter we illustrate each of these ideas
on mechanical networks of increasing complexity.

3.1. Elastic Fibers and the Strang Quartet

We connect 3 masses (nodes) with four springs (fibers) between two immobile walls, as in Fig-
ure 3.1, and apply forces at the masses and seek to determine the associated displacements.
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Figure 3.1. A fiber chain.

We suppose that a horizontal force, fj , is applied to each mj , and produces a horizontal dis-
placement xj , with the sign convention that rightward means positive. The bars at the ends of
the figure indicate rigid supports incapable of movement. The kj denote the respective spring stiff-
nesses. Regarding units, we measure fj in Newtons (N) and xj in meters (m) and so stiffness,
kj, is measured in (N/m). In fact each stiffness is a parameter composed of both ‘material’ and
‘geometric’ quantities. In particular,

kj =
Yjaj
Lj

(3.1)

where Yj is the fiber’s Young’s modulus (N/m2), aj is the fiber’s cross-sectional area (m2) and Lj
is the fiber’s (reference) length (m).

The analog of potential difference is here elongation. If ej denotes the elongation of the jth
spring then naturally,

e1 = x1, e2 = x2 − x1, e3 = x3 − x2, and e4 = −x3,

or, in matrix terms,

e = Ax where A =




1 0 0
−1 1 0
0 −1 1
0 0 −1




where A is the associated node–edge incidence matrix. We note that ej is positive when the spring
is stretched and negative when compressed. The analog of Ohm’s Law is here Hooke’s Law: the
restoring force in a spring is proportional to its elongation. The constant of proportionality is the
stiffness, kj, in (3.1). If we denote the restoring force by yj Hooke’s Law then reads yj = kjej , or,
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in matrix terms

y = Ke where K =




k1 0 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4


 .

As (3.1) implies that each kj > 0 we see that restoring forces echo the sign convention for elongations.
Namely, yj is positive when spring j is stretched, and negative when it is compressed. A positive
restoring force will then “pull” on its ends and we arrive at the free body diagram in Figure 3.2 for
each mass in Figure 3.1.

y
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j

y
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f
j

Figure 3.2. The free body diagram for the jth mass of Figure 3.1.

Balancing these forces at each mass we find

y1 = y2 + f1, y2 = y3 + f2, and y3 = y4 + f3,

or, in matrix terms

By = f where f =



f1
f2
f3


 and B =



1 −1 0 0
0 1 −1 0
0 0 1 −1


 .

As is the previous section we recognize in B the transpose of A. Gathering our three important
steps

e = Ax

y = Ke

ATy = f

(3.2)

we arrive, via direct substitution, at an equation for x. Namely

ATy = f ⇒ ATKe = f ⇒ ATKAx = f. (3.3)

These four steps, (3.2)-(3.3), comprise the Strang Quartet for mechanical networks. Assembling
ATKA we arrive at the final system



k1 + k2 −k2 0
−k2 k2 + k3 −k3
0 −k3 k3 + k4





x1
x2
x3


 =



f1
f2
f3


 . (3.4)

For prescribed k and f values we view this as a linear system of three equations for the three
unknown x values. The key to solving such systems is to eliminate coefficients below the diagonal
so that the remaining triangular system may be solved by back substitution. Its suite of variations
on this idea of Gaussian Elimination is the workhorse within Matlab. As we aim to develop
a deeper understanding of Gaussian Elimination we proceed by hand. This aim is motivated by a
number of important considerations. First, not all linear systems have unique solutions. A careful
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look at Gaussian Elimination will provide the general framework for not only classifying those
systems that possess unique solutions but also for providing detailed diagnoses of those physical
systems that lack solutions or possess too many.

3.2. Gaussian Elimination and LU Decomposition

In Gaussian Elimination one first uses linear combinations of preceding rows to eliminate nonzeros
below the main diagonal and then solves the resulting upper triangular system via back substitution.
To firm up our understanding let us take up the case where each kj = 1 and so (3.4) takes the form
Sx = f , i.e., 


2 −1 0
−1 2 −1
0 −1 2





x1
x2
x3


 =



f1
f2
f3


 (3.5)

We eliminate the (2, 1) (row 2, column 1) element by implementing

new row 2 = old row 2 +
1

2
row 1, (3.6)

bringing 

2 −1 0
0 3/2 −1
0 −1 2





x1
x2
x3


 =




f1
f2 + f1/2

f3




We eliminate the current (3, 2) element by implementing

new row 3 = old row 3 +
2

3
row 2, (3.7)

bringing the upper–triangular system
Ux = g, (3.8)

or, more precisely, 

2 −1 0
0 3/2 −1
0 0 4/3





x1
x2
x3


 =




f1
f2 + f1/2

f3 + 2f2/3 + f1/3


 (3.9)

One now simply reads off
x3 = (f1 + 2f2 + 3f3)/4. (3.10)

This in turn permits, via so-called back substitution, the solution of the second equation

x2 = 2(x3 + f2 + f1/2)/3 = (f1 + 2f2 + f3)/2, (3.11)

and, in turn,
x1 = (x2 + f1)/2 = (3f1 + 2f2 + f3)/4. (3.12)

One must say that Gaussian Elimination has succeeded here. For, regardless of the actual elements
of f we have produced an x for which ATKAx = f . On collecting (3.10)–(3.12) in matrix vector
form we discover the beautifully symmetric form



x1
x2
x3


 =

1

4



3 2 1
2 4 2
1 2 3





f1
f2
f3


 , (3.13)
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or x = Zf for short. If we contrast this with our starting point, (3.5), or Sx = f for short we find
f = Sx = SZf . As this holds for every f it follows that SZ can only be the identity matrix, I.
We can indeed confirm that




2 −1 0
−1 2 −1
0 −1 2





3/4 2/4 1/4
2/4 4/4 2/4
1/4 2/4 3/4


 =



1 0 0
0 1 0
0 0 1


 ,

that is, SZ = I. Now whenever the product of two square matrices is the identity matrix then
these two matrices are the inverses of one another. To make this explicit we use the notation
Z = S−1 and call it the inverse of S. Our discovery of S−1 in (3.13) was aided by our solution
of Sx = f for general, variable, f . There is a systematic alternative to our process that works by
simultaneously applying Gaussian Elimination to several “representative” f vectors. More precisely,
the Gauss-Jordan method computes the inverse of S by augmenting it with the identity matrix,
e.g., 


2 −1 0 | 1 0 0
−1 2 −1 | 0 1 0
0 −1 2 | 0 0 1




and then applying elementary row operations until S has been transformed to I. In the process,
the augmented I will be transformed into to desired S−1. This is easier done than said.

We first eliminate down, as in normal Gaussian Elimination, being careful to address each of the
3 f vectors. This produces 


2 −1 0 | 1 0 0
0 3/2 −1 | 1/2 1 0
0 0 4/3 | 1/3 2/3 1


 .

Now, rather than simple back substitution we instead eliminate up. Eliminating first the (2, 3)
element we find 


2 −1 0 | 1 0 0
0 3/2 0 | 3/4 3/2 3/4
0 0 4/3 | 1/3 2/3 1




Now eliminating the (1, 2) element we achieve



2 0 0 | 3/2 1 1/2
0 3/2 0 | 3/4 3/2 3/4
0 0 4/3 | 1/3 2/3 1




In the final step we scale each row in order that the matrix on the left takes on the form of the
identity. This requires that we multiply row 1 by 1/2, row 2 by 3/2 and row 3 by 3/4, with the
result 


1 0 0 | 3/4 1/2 1/4
0 1 0 | 1/2 1 1/2
0 0 1 | 1/4 1/2 3/4


 .

Now in this transformation of S into I we have, ipso facto, transformed I to S−1, i.e., the matrix
that appears on the right upon applying the method of Gauss–Jordan is the inverse of the matrix
that began on the left.
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Some matrices can be inverted by inspection. An important class of such matrices is in fact
latent in the process of Gaussian Elimination itself. To begin, we build the elimination matrix that
enacts the elementary row operation spelled out in (3.6),

E1 =




1 0 0
1/2 1 0
0 0 1




Do you ‘see’ that this matrix (when applied from the left to S) leaves rows 1 and 3 unsullied but
adds half of row one to two? This ought to be ‘undone’ by simply subtracting half of row 1 from
row two, i.e., by application of

E−1
1 =




1 0 0
−1/2 1 0
0 0 1




Please confirm that E−1
1 E1 is indeed I. Similarly, the matrix analog of (3.7) and its undoing are

E2 =



1 0 0
0 1 0
0 2/3 1


 and E−1

2 =



1 0 0
0 1 0
0 −2/3 1




Again, please confirm that E2E
−1
2 = I. Now we may express the reduction of S to U (recall (3.8))

as
E2E1S = U (3.14)

and the subsequent reconstitution by

S = LU, where L = E−1
1 E−1

2 =




1 0 0
−1/2 1 0
0 −2/3 1




One speaks of this representation as the LU decomposition of S. Do you agree that S−1 =
U−1L−1?

LU decomposition is the preferred method of solution for the large linear systems that occur in
practice. The decomposition is implemented in Matlab as

[L U] = lu(S);

and in fact lies at the heart of Matlab’s blackslash command. To diagram its use, we write Sx = f
as LUx = f and recognize that the latter is nothing more than a pair of triangular problems:

Lc = f and Ux = c,

that may be solved by forward and backward substitution respectively. This representation achieves
its greatest advantage when one is asked to solve Sx = f over a large class of f vectors. For example,
if we wish to steadily increase the force, f2, on mass 2, and track the resulting displacement we
would be well served by

[L,U] = lu(S);

f = [1 1 1];

for j=1:100,
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f(2) = f(2) + j/100;

x = U \ (L \ f);

plot(x,’o’)

end

You are correct in pointing out that we could have also just precomputed the inverse of S and then
sequentially applied it in our for loop. The use of the inverse is, in general, considerably more costly
in terms of both memory and operation counts. The exercises will give you a chance to see this for
yourself.

You may also be wondering if Gaussian Elimination always works so well. We first consider an
example of trouble from which we can recover. If

B =



2 2 2
4 4 0
0 5 3


 (3.15)

then elimination in column one brings

EB =



2 2 2
0 0 −4
0 5 3


 .

The zero in the (2,2) position seems to defeat our simple implementation of Gaussian Elimination.
A little thought brings two alternatives to eliminating the pesky 5. If we use row 1, instead of row
2, to eliminate the 5 then we will destroy the good work we did in column 1 in getting to EB. A
better idea is to simply swap rows 2 and 3 in EB. This is a perfectly fine thing to do – for rows
correspond to equations and the “order” in which the equations appear have no bearing on their
solution. This row swap may itself be achieved by multiplication by the elementary permutation
matrix

P =



1 0 0
0 0 1
0 1 0


 . (3.16)

In particular

U = PEB =



2 2 2
0 5 3
0 0 −4


 . (3.17)

Regarding the associated lower triangular matrix we note that P is its own inverse and so

PU = EB and E−1PU = B.

If we define L ≡ E−1P then we agree with the Matlab lu usage that L is a “psychologically lower
triangular matrix,” i.e., a product of lower triangular and elementary permutation matrices. We
could of course construct larger examples that require multiple row swaps. There are however many
matrices in which even row swapping won’t help.

A more careful look at back substitution reveals that the key to solving Sx = f was the fact
that no diagonal element of U vanished. These quantities are so important that we pause to name
them.
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Definition 3.1. The diagonal elements of the upper triangular matrix, U , achieved via the
application of Gaussian Elimination to S are called the pivots of S.

If each pivot of S is nonzero then S is said to be invertible, or nonsingular. If one or more
pivots of S is zero then S is said to be noninvertible, or singular.

Pivots also provide the most concrete setting by which to define and study the determinant. In
what follows we define the determinant, by fiat, for two special classes of matrices and then use pivots
to extend the definition to all square matrices. The special classes are triangular matrices, i.e,
matrices whose elements are all zero either above or below the diagonal, and so called elementary
permutations, i.e., matrices achieved by exchanging two rows in the identity matrix, as in (3.16).

Definition 3.2. If A is square we denote the determinant of A by det(A).
(i) If A is triangular then det(A) is the product of its diagonal elements.
(ii) If A is an elementary permutation of the identity then det(A) = −1.
(iii) The determinant of an arbitrary square matrix A is (−1)m times the product of the pivots
of A, where m is the number of requisite row swaps.

Looking back over our two examples we recognize that det(S) = 4 for the S in (3.5) and
det(B) = 40 for the B in (3.15).

Finally, we ask what the lovely formulas, (3.14) and (3.17), tell us about the determinants of
products. More precisely, as elimination of S required no row swaps, from

det(S) = det(E2E1S) = det(U) and det(E1) = det(E2) = 1

we infer that

det(ES) = det(E) det(S) (3.18)

for arbitrary S so long as E is an elementary elimination matrix. While, as elimination of B required
one row swap we infer from

det(B) = − det(U) = − det(PEB) and det(P ) = −1 (3.19)

that

det(PB) = det(P ) det(B) (3.20)

for arbitrary B so long as P is an elementary permutation matrix. Hence, as the LU decomposition
guarantees that every matrix is the product of elementary matrices it follows from (3.19) and (3.20)
that

det(AB) = det(A) det(B) (3.21)

for every A and B in Rn×n.

3.3. Planar Network Examples

We move from uni-axial to biaxial elastic networks by first considering the frame in Figure 3.3.
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Figure 3.3. Deformation of a frame. In (A) we join 3 elastic members, with stiffnesses k1, k2
and k3, at two joints, or nodes, and fix the other two ends to a foundation. Each (nonfixed) node
is subject to a planar force, with components (f1, f2) and (f3, f4). On application of a particular
force the frame is displaced as in (B). The respective components of displacement are (x1, x2) and
(x3, x4).

Our first step, as in the previous section, is to express the elongation of each fiber in terms of
the displacements of its ends. Begininng with fiber 1 in Figure 3.3(A), we suppose that it meets the
foundation at position (0, 0) and that, when at rest, its other end lies at (0, L1). When forced, as in
Figure 3.3(B), the ends of the deformed fiber now lie at (0, 0) and (x1, L1 + x2). As the elongation
is simply the deformed length minus the undeformed length we find

e1 =
√
x21 + (L1 + x2)2 − L1. (3.22)

The price one pays for moving to higher dimensions is that lengths are now expressed in terms of
square roots. The upshot is that the elongations are not linear combinations of the end displacements
as they were in the uni-axial case. If we presume however that the loads and stiffnesses are matched
in the sense that the displacements are small compared with the original fiber lengths then we may
effectively ignore the nonlinear contribution in (3.22). In order to make this precise we need only
recall the Taylor development of

√
1 + t about t = 0, i.e.,

√
1 + t = 1 + t/2 +O(t2)

where the latter term signifies that the remainder is of order t2. With regard to e1 this allows

e1 =
√
x21 + x22 + 2x2L1 + L2

1 − L1

= L1

√
1 + (x21 + x22)/L

2
1 + 2x2/L1 − L1

= L1 + (x21 + x22)/(2L1) + x2 + L1O(((x
2
1 + x22)/L

2
1 + 2x2/L1)

2)− L1

= x2 + (x21 + x22)/(2L1) + L1O(((x
2
1 + x22)/L

2
1 + 2x2/L1)

2).

If we now assume that

(x21 + x22)/(2L1) is small compared to x2 (3.23)
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then, as the O term is even smaller, we may neglect all but the first terms in the above and so
arrive at

e1 = x2.

To take a concrete example, if L1 is one meter and x1 and x2 are each one centimeter than x2 is
one hundred times (x21 + x22)/(2L1).

With regard to the second fiber, arguing as above, its elongation is (approximately) its stretch
along its initial direction. As its initial direction is horizontal, its elongation is just the difference
of the respective horizontal end displacements, namely,

e2 = x3 − x1.

Finally, the elongation of the third fiber is (approximately) the difference of its respective vertical
end displacements, i.e.,

e3 = x4.

We encode these three elongations in

e = Ax where A =




0 1 0 0
−1 0 1 0
0 0 0 1


 .

Hooke’s law is an elemental piece of physics and is not perturbed by our leap from uni-axial to
biaxial structures. Hence, the restoring force in each fiber remains proportional to its elongation,
i.e., yj = kjej where kj is the stiffness of the jth spring. In matrix terms,

y = Ke where K =



k1 0 0
0 k2 0
0 0 k3


 .

As in the uni-axial case, as positive yj pulls on its ends we find the free body diagrams of Figure 3.4.

f
2

y
1

m
1

y
2

f
1

f
4

y
3

m
2

y
2

f
3

Figure 3.4. Free body diagrams for masses in Figure 3.3.

Balancing horizontal and vertical forces at m1 then brings

y2 + f1 = 0 and y1 = f2,

while balancing horizontal and vertical forces at m2 brings

y2 = f3 and y3 = f4.
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We assemble these into

By = f where B =




0 −1 0
1 0 0
0 1 0
0 0 1


 ,

and recognize, as expected, that B is nothing more than AT . Putting the pieces together, we find
that x must satisfy Sx = f where

S = ATKA =




k2 0 −k2 0
0 k1 0 0

−k2 0 k2 0
0 0 0 k3


 .

Applying one step of Gaussian Elimination brings



k2 0 −k2 0
0 k1 0 0
0 0 0 0
0 0 0 k3







x1
x2
x3
x4


 =




f1
f2

f1 + f3
f4




and back substitution delivers
x4 = f4/k3,

0 = f1 + f3,

x2 = f2/k1,

x1 − x3 = f1/k2.

The second of these is remarkable in that it contains no components of x. Instead, it provides a
condition on f . In mechanical terms, it states that there can be no equilibrium unless the horizontal
forces on the two masses are equal and opposite. Of course one could have observed this directly
from the layout of the frame. In modern, three–dimensional structures with thousands of members
meant to shelter or convey humans one should not however be satisfied with the “visual” integrity of
the structure. In particular, one desires a detailed description of all loads that can, and, especially,
all loads that can not, be equilibrated by the proposed structure. In algebraic terms, given a matrix
S one desires a characterization of (1) all those f for which Sx = f possesses a solution and (2)
all those f for which Sx = f does not possess a solution. We provide such a characterization in
Chapter 4 in our discussion of the column space of a matrix.

Supposing now that f1 + f3 = 0 we note that although the system above is consistent it still
fails to uniquely determine the four components of x. In particular, it specifies only the difference
between x1 and x3. As a result both

x =




f1/k2
f2/k1
0

f4/k3


 and x =




0
f2/k1
−f1/k2
f4/k3




satisfy Sx = f . In fact, one may add to either an arbitrary multiple of

z ≡




1
0
1
0


 (3.24)
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and still have a solution of Sx = f . Searching for the source of this lack of uniqueness we observe
some redundancies in the columns of S. In particular, the third is simply the opposite of the first.
As S is simply ATKA we recognize that the original fault lies with A, where again, the first and
third columns are opposites. These redundancies are encoded in z in the sense that

Az = 0. (3.25)

Interpreting this in mechanical terms, we view z as a displacement and Az as the resulting elonga-
tion. In Az = 0 we see a nonzero displacement producing zero elongation. One says in this case
that the truss deforms without doing any work and speaks of z as an unstable mode. Again, this
mode could have been observed by a simple glance at Figure 3.3. Such is not the case for more
complex structures and so the engineer seeks a systematic means by which all unstable modes may
be identified. We shall see in Chapter 4 that these modes are captured by the null space of A. For
now we will deem our system stable if z = 0 is the only solution to (3.25).

From Sz = 0 one easily deduces that S is singular. More precisely, if S−1 were to exist then
S−1Sz would equal S−10, i.e., z = 0, contrary to (3.24). As a result, Matlab will fail to solve
Sx = f even when f is a force that the truss can equilibrate. One way out is to use the pseudo–
inverse, as we shall see below.

We close this section with the (scalable) example of the larger planar net in Figure 3.5. Elastic
fibers, numbered 1 – 20, meet at nodes, numbered 1 – 9. We limit our observation to the motion
of the nodes by denoting the horizontal and vertical displacements of node j by x2j−1 and x2j
respectively. Retaining the convention that up and right are positive we note that the elongation
of fiber 1 is

e1 = x8 − x2

while that of fiber 3 is
e3 = x3 − x1.
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Figure 3.5. A crude tissue model.

As fibers 2 and 4 are neither vertical nor horizontal their elongations, in terms of nodal displace-
ments, are not so easy to read off. This is more a nuisance than an obstacle however, for recalling
our earlier discussion, the elongation is approximately just the stretch along its undeformed axis.
With respect to fiber 2, as it makes the angle π/4 with respect to the positive horizontal axis, we
find

e2 = (x9 − x1) cos(π/4) + (x10 − x2) sin(π/4) = (x9 − x1 + x10 − x2)/
√
2.
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Similarly, as fiber 4 makes the angle 3π/4 with respect to the positive horizontal axis, its elongation
is

e4 = (x7 − x3) cos(3π/4) + (x8 − x4) sin(3π/4) = (x3 − x7 + x8 − x4)/
√
2.

These are both direct applications of the general formula

ej = (x2n−1 − x2m−1) cos(θj) + (x2n − x2m) sin(θj) (3.26)

for fiber j, as depicted in Figure 3.6, connecting node m to node n and making the angle θj with
the positive horizontal axis when node m is assumed to lie at the point (0, 0). The reader should
check that our expressions for e1 and e3 indeed conform to this general formula and that e2 and e4
agree with one’s intuition. For example, visual inspection of the specimen suggests that fiber 2 can
not be supposed to stretch (i.e., have positive e2) unless x9 > x1 and/or x10 > x2. Does this jibe
with (3.26)?

θ

x

x

x

x
2m

2m-1

2n

2n-1

j

deformed

original

Figure 3.6. Elongation of a generic bar, see (3.26).

Applying (3.26) to each of the remaining fibers we arrive at e = Ax where A is 20-by-18, one
row for each fiber, and one column for each degree of freedom. For systems of such size with such
a well defined structure one naturally hopes to automate the construction. We have done just that
in the accompanying skin.m. It begins with a matrix of raw data that anyone with a protractor
could have keyed in directly from Figure 3.5. More precisely, the data matrix has a row for each
fiber and each row consists of the starting and ending node numbers and the angle the fiber makes
with the positive horizontal axis. This data is precisely what (3.26) requires in order to know which
columns of A receive the proper cos or sin values. The nonzero structure of the final A matrix is
displayed in the Figure 3.7(A).

The next two steps are now familiar. If K denotes the diagonal matrix of fiber stiffnesses and
f denotes the vector of nodal forces then y = Ke and ATy = f and so one must solve Sx = f
where S = ATKA. In this case there is an entire three–dimensional class of z for which Az = 0
and therefore Sz = 0. The three indicates that there are three independent unstable modes of the
specimen, e.g., two translations and a rotation. As a result S is singular and x = S\f in Matlab

will get us nowhere. The way out is to recognize that S has 18− 3 = 15 stable modes and that if
we restrict S to ‘act’ only in these directions then it ‘should’ be invertible. We will begin to make
these notions precise in Chapter 5 on the Fundamental Theorem of Linear Algebra.
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Figure 3.7. (A) The nonzero structure of the incidence matrix for the network of Figure 3.5. (B)
The black circles lie at the centers of the nodes when the network is unloaded. The red squares
mark the node centers after loading by the uniform traction force, f , in (3.27). (skin.m)

For now let us note that every matrix possesses such a pseudo-inverse and that it may be
computed in Matlab via the pinv command. On supposing the fiber stiffnesses to each be one
and the edge traction to be of the form

f = [−s − s 0 − 1 s − s − 1 0 0 0 1 0 − s s 0 1 s s]T , (3.27)

where s = 1/
√
2, we arrive at x via x=pinv(S)*f and refer to Figure 3.7 for its graphical represen-

tation.

3.4. Equilibrium and Energy Minimization∗

Given a stable mechanical system with stiffness matrix S = ATKA ∈ Rn×n and a load vector
f ∈ Rn we rate candidates u ∈ Rn for its displacement based on their associated total potential
energy. Where

Total Potential Energy ≡ Internal Strain Energy−Work Done by Load

= 1
2
uTSu− uTf.

The resulting minimum principle hinges on two key properties of S = ATKA, inherited from the
physical fact that K is a diagonal matrix with positive numbers on its diagonal. The first is that it
is symmetric, for ST = (ATKA)T = ATKTA = S, and the second is that it is positive definite,
i.e.,

vTSv = vTATKAv = (Av)TK(Av) =
n∑

j=1

kj(Av)
2
j > 0, ∀ v ∈ Rn, v 6= 0. (3.28)

The inequality stems from the fact that each stiffness, kj > 0, and as A is stable that Av 6= 0. This
also helps us see why 1

2
vTSv is identified as the Internal Strain Energy. For if v is the candidate

displacement then e = Av is the associated elongation, or strain. The associated internal force is
y = Ke and hence kj(Av)

2
j/2 = ejyj/2 is strain energy stored in the jth fiber.
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Proposition 3.3. The candidate with the least total potential energy is precisely the equilibrium
solution x = S−1f . In other words

−1
2
fTS−1f = min

u∈Rn

1
2
uTSu− uTf. (3.29)

Proof: Suppose that Sx = f . Now for each u ∈ Rn,

(1
2
uTSu− uTf)− (1

2
xTSx− xT f) = 1

2
xTSx− uTSx+ 1

2
uTSu

= 1
2
(x− u)TS(x− u) ≥ 0,

(3.30)

where the last equality uses S = ST and the last inequality uses (3.28). It follows directly from
(3.30) that x = S−1f indeed minimizes the total potential energy. On substitution of this x into

1
2
xTSx− xTf

we arrive at the left side of (3.29). End of Proof.

In addition to confirming our belief that equilibrium solutions should use less energy than other
candidates, this principle can also be used to estimate important physical quantities without ever

having to solve Sx = f . To see this, note from (3.30) that, xTf , the actual work done by the load,
obeys

xT f = xTSx ≥ 2uTf − uTSu ∀ u ∈ Rn. (3.31)

The key point is that we are free to try any candidate on the right hand side. Each choice will
provide a lower bound on the true work done. There are trivial choices, e.g., u = 0 informs is that
xTf ≥ 0, and nontrivial choices, e.g., u = f informs us that

xTf ≥ fT (2I − ATKA)f.

This inequality, in the context of our small example, (3.5), yields

xTf ≥
(
f1 f2 f3

)


0 1 0
1 0 1
0 1 0





f1
f2
f3


 =

(
f1 f2 f3

)



f2
f1 + f3
f2


 = 2f2(f1 + f3).

In the constant load case, f1 = f2 = f3, this reveals that the total displacement, x1 + x2 + x3,
exceeds 4f1.

Although developed (here) as a principle of mechanics this proposition has found use in many
areas of physical equilibrium. We will also have occasion to invoke it as an analytical tool. Toward
that end it seems best to formulate it in a general setting – and in a way too that removes the
perhaps annoying −1/2 factor on the left side of (3.29).

Proposition 3.4 If B ∈ Rn×n is symmetric and positive definite and f ∈ Rn then

fTB−1f = max
x∈Rn

2xT f − xTBx,

and the maximum is attained at that x for which Bx = f .

Proof: This is a simple rearrangement of (3.29). In particular, note that

max
x∈Rn

{2xTf − xTBx} = max
x∈Rn

{−2(1
2
xTBx− xT f)} = −2 min

x∈Rn
{1
2
xTBx− xT f}.
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End of Proof.

3.5. Notes and Exercises

As in the previous chapter, the Strang Quartet, is drawn from Strang (2007). That text is also
an excellent source for a deeper investigation of the LU and Cholesky factorizations and Energy
Minimization.

1. Deduce from e = Ax and AT y = f that the work done by the load is precisely the work done
by the springs. That is, show that

xT f = yTe.

2. With regard to Figure 3.1, (i) Derive the A and K matrices resulting from the removal of the
fourth spring (but not the third mass) and assemble S = ATKA.

(ii) Compute S−1, by hand via Gauss–Jordan, and compute L and U where S = LU by
hand via the composition of elimination matrices and their inverses. Assume throughout that
k1 = k2 = k3 = k,

(iii) Use the result of (ii) with the load f = [0 0 F ]T to solve Sx = f by hand two ways, i.e.,
x = S−1f and Lc = f and Ux = c.

3. With regard to Figure 3.3

(i) Derive the A and K matrices resulting from the addition of a fourth (diagonal) fiber that
runs from the top of fiber one to the second mass and assemble S = ATKA.

(ii) Compute S−1, by hand via Gauss–Jordan, and compute L and U where S = LU by hand
via the composition of elimination matrices and their inverses. Assume throughout that with
k1 = k2 = k3 = k4 = k.

(iii) Use the result of (ii) with the load f = [0 0 F 0]T to solve Sx = f by hand two ways, i.e.,
x = S−1f and Lc = f and Ux = c.

4. Prove that if A and B are invertible then (AB)−1 = B−1A−1.

5. Show that if P is an elementary permutation of I then PP = I and use this to arrive at P−1.

6. Both elimnation matrices and elementary permutation matrices can be inverted with ease.
One more class of such matrices are those that are A+ uvT where A is invertible. Please show
that

(A+ uvT )−1 = A−1 +
1

1 + vTA−1u
A−1uvTA−1. (3.32)

7. Note that A is invertible then AA−1 = I. Use (3.21) to show that det(A−1) = 1/ det(A).

8. (a) Compute the product of the pivots of

(
a b
c d

)
, a 6= 0,

and compare your answer with Exer. 1.6 and discuss the relation of determinant to area.

45



(b) Compute the product of the pivots of


u1 v1 w1

u2 v2 w2

u3 v3 w3


 u1 6= 0, u1v2 6= v1u2

and compare your answer with |wT (u × v)| (recall Exer. 1.21(h)) and discuss the relation of
determinant to volume.

(c) Argue that if X is a nice set in R3 (in the sense that for each x ∈ X there is a cube centered
at x that also lies in X) and A is a 3-by-3 matrix then

volume(AX)

volume(X)
= | det(A)|, (3.33)

where AX = {Ax : x ∈ X}.
9. Show that

A =
1

2



−2 0 2 0 0 0

0 0 1 −
√
3 −1

√
3

−1 −
√
3 0 0 1

√
3


 (3.34)

is the geometric incidence matrix for the equilateral triangle of Figure 3.8.
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Figure 3.8. An equilateral triangle with labeled edges and degrees of freedom.

Show that the vectors

(1, 0, 1, 0, 1, 0)T , (0, 1, 0, 1, 0, 1)T and (−1,
√
3,−1,−

√
3, 2, 0)T

are displacements that do no work. Please draw them (i.e., draw the original triangle and
its displacement) and explain (using phrases like “translation in direction ... by ...” and/or
“rotation about ... by ...”) what these displacements signify.

10. Generalize Figure 3.5 to the case of 16 nodes connected by 42 fibers by modifying skin.m.
Introduce one stiff (say k = 100) fiber and show how to detect it by ‘properly’ choosing f .
Submit your well-documented m-file as well as the plots, similar to Figure 3.7, from which you
conclude the presence of a stiff fiber.
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11. Generalize Figure 3.5 to permit ever finer meshes. In particular, with reference to Figure 3.9
we assume N(N−1) nodes where the horizontal and vertical fibers each have length 1/N while
the diagonal fibers have length

√
2/N . The top row of fibers is anchored to the ceiling.

(i) Write and test a Matlab function S=bignet(N) that accepts the odd number N and
produces the stiffness matrix S = ATKA. As a check on your work we offer a spy plot of A
when N = 5. Your K matrix should reflect the fiber lengths as spelled out in (3.1). You may
assume Yjaj = 1 for each fiber. The sparsity of A also produces a sparse S. In order to exploit
this, please use S=sparse(S) as the final line in bignet.m.

(ii) Write and test a driver called bigrun that generates S for N = 5 : 4 : 29 and for each N
solves Sx = f two ways for 100 choices of f . In particular, f is a steady downward pull on
the bottom set of nodes, with a continual increase on the pull at the center node. This can be
done via f=zeros(size(S,1),1); f(2:2:2*N) = 1e-3/N;

for j=1:100,

f(N+1) = f(N+1) + 1e-4/N;

This construction should be repeated twice, with the code that closes §3.1 as your guide. In
the first scenario, precompute S−1 via inv and then apply x = S−1f in the j loop. In the
second scenario precompute L and U and then apply x = U\(L\f) in the j loop. In both
cases use tic and toc to time each for loop and so produce a graph as in Figure 3.10

21
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Figure 3.9. A fine anchored fiber network.
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Figure 3.10. (A) The nonzeros of the incidence matrix of the fine net of Figure 3.9 with 5
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levels. (B) Comparison of solution times for large fine nets.

Submit your well documented code, a spy plot of S when N = 9, and a time comparison like
(will vary with memory and cpu) Figure 3.10.

12. We consider the methane molecule of Figure 3.11. The carbon atom is at (0, 0, 0) and hydrogen
atoms are at

d = (1, 1, 1) = (
√
3 cos θd cos φd,

√
3 cos θd sinφd,

√
3 sin θd)

c = (−1,−1, 1) = (
√
3 cos θc cosφc,

√
3 cos θc sin φc,

√
3 sin θc)

b = (1,−1,−1) = (
√
3 cos θb cosφb,

√
3 cos θb sin φb,

√
3 sin θb)

a = (−1, 1,−1) = (
√
3 cos θa cosφa,

√
3 cos θa sin φa,

√
3 sin θa),

where the angles are as illustrated in Figure 3.11. We can use (1.5) to compute their cosines.
For example, with reference to Figure 3.11(B), as d = (1, 1, 1) and Pd = (1, 1, 0) and the
dashed red vector is e1 = (1, 0, 0) we find

cos(θd) =
dTPd

‖d‖‖Pd‖ =
2√
3
√
2
. and cos(φd) =

eT1 Pd

‖e1‖‖Pd‖
=

1√
2
.

The respective sines are then completed by Pythagoras. Following this reasoning please derive

cosφd = sinφd = 1/
√
2, sin θd = 1/

√
3, cos θd =

√
2/3

cosφc = sinφc = −1/
√
2, sin θc = 1/

√
3, cos θc =

√
2/3

cosφb = − sinφb = 1/
√
2, sin θb = −1/

√
3, cos θb =

√
2/3

− cosφa = sinφa = 1/
√
2, sin θa = −1/

√
3, cos θa =

√
2/3.

If the displacement of the carbon atom is (x1, x2, x3) and the displacement of the d hydrogen
atom is (x4, x5, x6) the elongation of the respective CH bond is

ed = (x4 − x1) cos θd cos φd + (x5 − x2) cos θd sinφd + (x6 − x3) sin θd.

Apply this reasoning to find the elongation of the other bonds and so arrive at the following
4-by-15 incidence matrix

A =
1√
3




1 −1 1 −1 1 −1 0 0 0 0 0 0 0 0 0
−1 1 1 0 0 0 1 −1 −1 0 0 0 0 0 0
1 1 −1 0 0 0 0 0 0 −1 −1 1 0 0 0
−1 −1 −1 0 0 0 0 0 0 0 0 0 1 1 1


 (3.35)
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Figure 3.11 (A) A methane, CH4, molecule. The 4 hydrogen atoms sit at the vertices of the
red tetrahedron. In order to establish coordinates we have inscribed the tetrahedron in a blue
box. (B) An illustration of the two angles needed to describe the hydrogen atom at point
d = (1, 1, 1). The red dashed line is the positive x-axis. The dashed black line is the projection
of d onto the (x, y) plane. The angle φd is the angle between these dashed lines. The angle θd
is the angle between the dashed black line and the d vector. (C) Labeling the three degrees of
freedom of each atom.

13. The minimum energy principal of §3.4 provides a means to define, and study, a scalar measure
of network strength or, rather, weakness. Namely, given a load f and associated displacement
x we define the compliance of the network to be simply xTf , i.e., the work done by the load.
In designing networks we naturally choose fiber stiffnesses to lessen the compliance, i.e., to
strengthen the network. Toward that end, for fixed incidence matrix A and load f we denote
by C(k) the compliance of the network with stiffnesses k = (k1, . . . , km).

(a) Use Prop. 3.4 to show that

C(k) = max
v∈Rn

2vTf − vTATKAv.

(b) Use (a) to show that if κ = (κ1, . . . , κm) is a stiffness vector for which κj ≥ kj for each j
then C(κ) ≤ C(k). That is, stiffening each of the fibers lessens the work done by the load.
Hint: (3.28).

(c) Show that the compliance is a convex function of k. That is, show that

C(tk + (1− t)κ) ≤ tC(k) + (1− t)C(κ) (3.36)

for all 0 ≤ t ≤ 1 and all k and κ. Hint: First show that the max of a sum can not exceed the
sum of the max’s. That is,

max
v

(α(v) + β(v)) ≤ max
v

α(v) + max
u

β(u).

(d) Show that if ‖f‖ = 1 and ATKAf = λf for some λ ∈ R then C(k) ≥ 1/λ. Hint: Choose
u = αf and maximize over α ∈ R.
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4. The Column and Null Spaces

The previous chapter revealed pivots to be the crucial determinants of the solvability of linear
systems of equilibrium equations. In this and the following chapter we consider the general problem
Sx = f for arbitrary S ∈ Rm×n and f ∈ Rm. Pivots will remain pivotal here, bringing us to
the important notions of linear independence, basis, rank and dimension. We apply these notions
both to determination of stability of mechanical networks and to the detailed structure of nilpotent
matrices.

4.1. The Column Space

We begin with the direct geometric interpretation of matrix–vector multiplication. Recalling
(1.11), the multiplication of the vector x ∈ Rn by the matrix S ∈ Rm×n produces a linear combina-
tion of the columns of S,

Sx = [S(:, 1) S(:, 2) · · · S(:, n)]




x1
x2
...
xn


 = x1S(:, 1) + x2S(:, 2) + · · ·+ xnS(:, n). (4.1)

The collection of all such linear combinations is know as the span of the columns of S, or,
equivalently, the range of S or, equivalently the column space of S. Its formal definition is

Definition 4.1. The column space of the matrix S ∈ Rm×n is the span of its columns, i.e.,

R(S) ≡ {Sx : x ∈ Rn}. (4.2)

This is a subset of Rm. The letter R stands for range.

Hopefully our opening chapter has prepared you to parse the set notation used in (4.2). The
braces, {} denote set and the colon denotes such that, for which, or where. Hence, an English
translation of {Sx : x ∈ Rn} would be “the set of all products of the form Sx where x lies in Rn.”
But lets not over analyze, we learn by doing.

The column space of the single column

S =

(
1
1

)

is the line in the plane through the point (1, 1), while the column space of

S =

(
1 1
1 0

)

is the entire plane, i.e., all of R2. Can you “see” how each vector in the plane can be written as a
linear combination (weighted sum) of these two columns? We are early in the chapter and so wish
to build intuition and confidence so that when we venture into higher dimensions your vertigo is
balanced by your sense of wonder.
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For example, the column space of the S matrix associated with the frame in Figure 3.3 is, by
definition,

R(S) =




x1




1
0
−1
0


 + x2




0
1
0
0


+ x3




−1
0
1
0


 + x4




0
0
0
1


 : x ∈ R4




.

And now, although you can not fully visualize this set you can see that the first and third columns
are colinear, i.e., lie on the same line. As a result we can get by with the more compact description

R(S) =




x1




k2
0

−k2
0


+ x2




0
k1
0
0


+ x3




0
0
0
k3


 : x ∈ R3




.

As the remaining three columns are linearly independent we may go no further. We ‘recognize’ then
R(S) as a three dimensional subspace of R4. In order to use these ideas with any real confidence
we must establish careful definitions of subspace, independence, and dimension.

A subspace is a natural generalization of line and plane. Namely, it is any set that is closed
under vector addition and scalar multiplication. More precisely,

Definition 4.2. A subset M of Rn is a subspace of Rn when
(S1) p+ q ∈M whenever p ∈M and q ∈M , and
(S2) tp ∈M whenever p ∈M and t ∈ R.

Let us confirm now that the column space, R(S), is indeed a subspace. Regarding
(S1) if p ∈ R(S) and q ∈ R(S) then p = Sx and q = Sy for some x and y. Hence, p+q = Sx+Sy =
S(x+ y), i.e., (p+ q) ∈ R(S). Regarding
(S2), tp = tSx = S(tx) so tp ∈ R(S).

Note that we used only the definition of R(S) and did not make mention of any particular S.
To show that something is not a subspace it suffices to produce one instance that violates one

of the two conditions. For example, to prove that the circle

C = {x ∈ R2 : x21 + x22 = 1}

is not a subspace we note that (1, 0) ∈ C and (0, 1) ∈ C while their sum (1, 1) 6∈ C and so (S1) is
violated. We could, for good measure, violate condition (S2) by noting that 2(1, 0) 6∈ C.

4.2. The Null Space

If the product of two real numbers is zero then we know that one of them must be zero. This
inference is false in higher dimensions. For example

(
1 1
2 2

)(
1
−1

)
=

(
0
0

)
.

Given a matrix S, we will see that it pays to keep track of those vectors that S annihilates.
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Definition 4.3. The null space of S ∈ Rm×n is the collection of those vectors in Rn that S
maps to the zero vector in Rm. More precisely,

N (S) ≡ {x ∈ Rn : Sx = 0}.

Let us confirm that N (S) is in fact a subspace. If both x and y lie in N (S) then Sx = Sy = 0
and so S(x+ y) = 0, i.e., x+ y ∈ N (S). In addition, S(tx) = tSx = 0 for every t ∈ R.

As an example we remark that the null space of the S matrix associated with Figure 3.3 is

N (S) =




t




1
0
1
0


 : t ∈ R




,

a line in R4.
The null space addresses the question of uniqueness of solutions to Sx = f . For, if Sx = f and

Sy = f then S(x− y) = Sx− Sy = f − f = 0 and so (x− y) ∈ N (S). Hence, a solution to Sx = f
will be unique if, and only if, N (S) = {0}.

Recalling (4.1) we note that if x ∈ N (S) and x 6= 0, say, e.g., x1 6= 0, then Sx = 0 takes the
form

s1 = −
n∑

j=2

xj
x1
sj .

That is, the first column of S may be expressed as a linear combination of the remaining columns
of S. Hence, one may determine the (in)dependence of a set of vectors by examining the null space
of the matrix whose columns are the vectors in question.

Definition 4.4. The vectors {s1, s2, . . . , sn} are said to be linearly independent if N (S) = {0}
where S = [s1 s2 · · · sn].

As lines and planes are described as the set of linear combinations of one or two generators, so
too subspaces are most conveniently described as the span of a few basis vectors.

Definition 4.5. A collection of vectors {s1, s2, . . . , sn} in a subspace M is a basis for M when
the matrix S = [s1 s2 · · · sn] satisfies
(B1) M = R(S), and
(B2) N (S) = {0}.

The first stipulates that the columns of S span M while the second requires the columns of S to
be linearly independent. For example, the columns of

(
1 2
3 4

)

comprise a basis for R2, while the columns of neither
(
1 1
2 2

)
nor

(
1 2 3
3 6 9

)
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comprise bases for R2.

4.3. Pivots, Rank and Dimension

To appreciate the importance of the notions of the past two sections it probably best to move
beyond its “textbook” examples. To begin, we compute bases for the null and column spaces of the
incidence matrix associated with the ladder in Figure 4.1

1 2

3 4

1 2 3

4 5

6 7 8

Figure 4.1. An unstable ladder?

The ladder has 8 bars and 4 nodes, so 8 degrees of freedom. Continuing to denote the horizontal
and vertical displacements of node j by x2j−1 and x2j we arrive at the incidence matrix

A =




1 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 −1 0 0 0 1 0 0
0 0 0 −1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 −1 0 1 0
0 0 0 0 0 0 −1 0




To determine a basis for R(A) we must find a way to discard its dependent columns. A moment’s
reflection reveals that columns 2 and 6 are colinear, as are columns 4 and 8. We seek, of course,
a more systematic means of uncovering these, and perhaps other less obvious, dependencies. Such
dependencies are more easily discerned from the row reduced form

Ared = rref(A) =




1 0 0 0 0 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 −1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




Recall that rref performs the elementary row operations necessary to eliminate all nonzeros below
the diagonal.

Each nonzero row of Ared is called a pivot row. The first nonzero in each row of Ared is called a
pivot. Each column that contains a pivot is called a pivot column. On account of the staircase
nature of Ared we find that there are as many pivot columns as there are pivot rows. In our example
there are six of each and, again on account of the staircase nature, the pivot columns are the linearly
independent columns of Ared. One now asks how this might help us distinguish the independent
columns of A. For, although the rows of Ared are linear combinations of the rows of A no such thing
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is true with respect to the columns. The answer is: pay attention only to the indices of the pivot
columns. In our example, columns {1, 2, 3, 4, 5, 7} are the pivot columns. In general

Proposition 4.6. Suppose A ∈ Rm×n If the pivot columns of Ared are columns c1, c2, . . . , cr then
columns c1, c2, . . . , cr of A constitute a basis for R(A).

Proof: Note that the pivot columns of Ared are, by construction, linearly independent. Suppose,
however, that columns {cj : j = 1, . . . , r} of A are linearly dependent. In this case there exists a
nonzero x ∈ Rn for which Ax = 0 and

xk = 0, k 6∈ {cj : j = 1, . . . , r}. (4.3)

Now Ax = 0 necessarily implies that Aredx = 0, contrary to the fact that the {Ared(:, cj) : j =
1, . . . , r} are the pivot columns of Ared. (The implication Ax = 0 ⇒ Aredx = 0 follows from the
fact that we may read row reduction as a sequence of linear transformations of A. If we denote the
product of these transformations by T then TA = Ared and you see why Ax = 0 ⇒ Aredx = 0. The
reverse implication follows from the fact that each of our row operations is reversible, or, in the
language of the land, invertible.)

We now show that the span of {A(:, cj) : j = 1, . . . , r} is indeed R(A). This is obvious if r = n,
i.e., if all of the columns are linearly independent. If r < n there exists a q 6∈ {cj : j = 1, . . . , r}.
Looking back at Ared we note that its qth column is a linear combination of the pivot columns with
indices not exceeding q. Hence, there exists an x satisfying (4.3) and Aredx = 0 and xq = 1. This x
then necessarily satisfies Ax = 0. This states that the qth column of A is a linear combination of
those in {A(:, cj) : j = 1, . . . , r}. End of Proof.

We next exhibit a basis for N (A). We exploit the already mentioned fact that N (A) = N (Ared).
Regarding the latter, we partition the elements of x into so called pivot variables,

{xcj : j = 1, . . . , r}
and free variables

{xk : k 6∈ {cj : j = 1, . . . , r}}.
There are evidently n− r free variables. For convenience, let us denote these in the future by

{xcj : j = r + 1, . . . , n}.
One solves Aredx = 0 by expressing each of the pivot variables in terms of the nonpivot, or free,
variables. In the example above, x1, x2, x3, x4, x5 and x7 are pivot while x6 and x8 are free. Solving
for the pivot in terms of the free we find

x7 = 0, x5 = 0, x4 = x8, x3 = 0, x2 = x6, x1 = 0,

or, written as a vector,

x = x6




0
1
0
0
0
1
0
0




+ x8




0
0
0
1
0
0
0
1




, (4.4)
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where x6 and x8 are free. As x6 and x8 range over all real numbers the x above traces out a plane
in R8. This plane is precisely the null space of A and (4.4) describes a generic element as the
linear combination of two basis vectors. Compare this to what Matlab returns when faced with
null(A,’r’). Abstracting these calculations we arrive at

Proposition 4.7. Suppose that A ∈ Rm×n has pivot indices {cj : j = 1, . . . , r} and free indices
{cj : j = r + 1, . . . , n}. A basis for N (A) may be constructed of n − r vectors {z1, z2, . . . , zn−r}
where zk, and only zk, possesses a nonzero in its cr+k component.

With respect to our ladder the free indices are c7 = 6 and c8 = 8. You still may be wondering
what R(A) and N (A) tell us about the ladder that we did not already know. Regarding R(A)
the answer will come in the next chapter. The null space calculation however has revealed two
independent motions against which the ladder does no work! Do you see that the two vectors in
(4.4) encode rigid vertical motions of bars 4 and 5 respectively? As each of these lies in the null
space of A the associated elongation is zero. Can you square this with the ladder as pictured in
Figure 4.1? I hope not, for vertical motion of bar 4 must “stretch” bars 1,2,6 and 7. This apparent
contradiction is resolved by reflecting on the ”linearization” performed in (3.23).

To secure your understanding we close this section with a few more (modest size) examples. We
compute bases for the column and null spaces of

A =

(
1 1 0
1 0 1

)

Subtracting the first row from the second lands us at

Ared =

(
1 1 0
0 −1 1

)

hence both rows are pivot rows and columns 1 and 2 are pivot columns. Prop. 4.6 then informs us
that the first two columns of A, namely

{(
1
1

)
,

(
1
0

)}
(4.5)

comprise a basis for R(A). In this case, R(A) = R2.
Regarding N (A) we express each row of Aredx = 0 as the respective pivot variable in terms of

the free. More precisely, x1 and x2 are pivot variables and x3 is free and Aredx = 0 reads

x1 + x2 = 0

−x2 + x3 = 0

Working from the bottom up we find

x2 = x3 and x1 = −x3
and hence every vector in the null space is of the form

x = x3



−1
1
1


 .
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In other words

N (A) =



x3



−1
1
1


 : x3 ∈ R



 and



−1
1
1




constitutes a basis for N (A).
We append a new column and arrive at

B =

(
1 1 0 2
1 0 1 3

)
.

The column space of A was already the ‘whole’ space and so adding a column changes, with respect
to R(A), nothing. That is, R(B) = R(A) and (4.5) is a basis for R(B).

Regarding N (B) we again subtract the first row from the second,

Bred =

(
1 1 0 2
0 −1 1 1

)

and identify x1 and x2 as pivot variables and x3 and x4 as free. We see that Bredx = 0 means

x1 + x2 + 2x4 = 0

−x2 + x3 + x4 = 0

or, equivalently,
x2 = x3 + x4 and x1 = −x3 − 3x4

and so

N (B) =




x3




−1
1
1
0


+ x4




−3
1
0
1


 : x3 ∈ R, x4 ∈ R





and








−1
1
1
0


 ,




−3
1
0
1








constitutes a basis for N (B). From these examples we may abstract one useful generality. If m < n
then there will always be at least one free variable. As a result,

Proposition 4.8. If A ∈ Rm×n and m < n then there exists a nonzero x ∈ Rn for which Ax = 0.
In other words, any collection of more than m vectors in Rm will be linearly dependent.

The number of pivots, r, of A ∈ Rm×n appears to be an important indicator. We shall refer to it
from now on as the rank of A. Our canonical bases for R(A) and N (A) possess r and n−r elements
respectively. The number of elements in a basis for a subspace is typically called the dimension
of the subspace. This of course presumes that every basis is the same size. Let us confirm that.

Proposition 4.9. If M is a subspace of Rn and both X = {x1, . . . , xp} and Y = {y1, . . . , yq} are
bases for M then p = q.

Proof: We establish the contrapositive by supposing p 6= q, or without loss, p < q and then arguing
that the yj are not linearly independent. As each yj is in the span of X it follows that yj = Xaj
for some nonzero aj ∈ Rp. We collect these in A ∈ Rp×q. As q > p we may infer from the previous
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proposition the existence of a nonzero z ∈ Rq for which Az = 0. Now Y z = XAz = 0 informs us
that the columns of Y are linearly dependent. End of Proof.

The results of this section now permit us concise answers to the two questions with which we
began the chapter; when can we solve Ax = b and when is the solution unique? The most concise
answers relate the rank, r, of A to its number of rows, m, and its number of columns, n. Namely,

Existence: If r = m then R(A) = Rm and so Ax = b has a solution x for every b ∈ Rm.
Uniqueness: If r = n then N (A) = {0} and so Ax = b has at most one solution.

We note that if m = n = r the matrix is invertible and Ax = b has the solution x = A−1b.

4.4. The Structure of Nilpotent Matrices∗

A square matrix A ∈ Rn is said to be nilpotent when Am = 0 while Am−1 6= 0 for some integer
m > 1. For example,

A =



2 2 −2
5 1 −3
1 5 −3


 (4.6)

obeys A3 = 0 while A2 6= 0. Nilpotent matrices arise naturally when studying the eigenvalue
problem. In fact, as we will see in Chapter 11, they are the only obstruction to a clean eigen–
decomposition. We study them here because they may be fully decomposed by their growing
sequence of null spaces

N (A) ⊂ N (A2) ⊂ · · · ⊂ N (Am−1) ⊂ N (Am) = Rn. (4.7)

In fact, we will show that the structure of a nilpotent matrix is completely encoded in the sequence
of dimensions,

dj ≡ dimN (Aj), for j = 1, . . . , m.

Our first interesting observation is that these dimensions can not grow too quickly. More precisely,

dj − dj−1 ≤ d1, for j = 2, . . . , m. (4.8)

We build up to the full decomposition by first putting a nilpotent matrix in strictly (only zeros on
the diagonal) upper triangular form. We begin with a basis, X1 = {xj : j = 1, . . . , d1} for N (A)
and then expand this to basis of N (A2) by appending X2 = {xj : j = d1 + 1, . . . , d2}. We continue
this process until we arrive at a basis {xj : j = 1, . . . , n} for all of Rn. Regarding the example in
(4.6) we find

x1 =



1
1
2




to be a basis for N (A) and

v1 =



2
3
3


 and v2 =




0
1
−1




to be a basis for N (A2). As v1 = 2x1+v2 we choose x2 = v2. To find x3 we simply look for anything
not in the span of x1 and x2. Note that

x3 =



0
0
1



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will do. Let us now examine the action of A onto our basis vectors. The first is easy, Ax1 = 0. For
the second, as x2 ∈ N (A2) we find that Ax2 ∈ N (A) and hence Ax2 must be a multiple of x1. In
fact

Ax2 = 4x1.

Finally, by the same token, Ax3 ∈ N (A2) and so Ax3 is a linear combination of x1 and x2. In fact

Ax3 = −2x1 − x2.

If we gather our findings we find

A[x1 x2 x3] = [0 4x1 − 2x1 − x2] = [x1 x2 x3]U (4.9)

where U is the strictly upper triangular matrix

U =



0 4 −2
0 0 −1
0 0 0


 . (4.10)

We write (4.9) as AX = XU and note that by construction the columns of X are linearly indepen-
dent. As such X is invertible and we may multiply across by X−1 and arrive at

X−1AX = U. (4.11)

It is no more difficult to establish the general case.

Proposition 4.10. If A is nilpotent then there exists an invertible matrix X and a strictly upper
triangular matrix, U for which (4.11) holds.

Proof: We begin with a basis, X1 = {xj : j = 1, . . . , d1} for N (A) and then expand this to basis of
N (A2) by appending X2 = {xj : j = d1 + 1, . . . , d2}. The key observation is that, by construction,
for each xj ∈ X2 we know that

Axj 6= 0 while A(Axj) = 0.

In other words, Axj is a nontrivial linear combination of elements of N (A). As as result, Axj = 0
for the j ≤ d1 while Axj for d1 + 1 ≤ j ≤ d2 is a linear combination of the strictly prior xj , i.e., for
j ≤ d1. Proceeding on, if necessary, the xj added to complete a basis for N (A3) can be expressed
as a linear combination of strictly prior xj . End of Proof.

This transformation of A into U by X in (4.11) is called a similarity transformation and in
this case A and U are said to be similar. It follows from (1.14) and (3.21) that if two matrices are
similar then they have the same determinant and trace. This then proves,

Corollary 4.11. If A is nilpotent then det(A) = tr(A) = 0.

To reveal the finer structure of nilpotent A we recognize that we have a lot a freedom in how we
choose the many bases. The key point is to start at the right end. It also helps to have the right
definition.
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Definition 4.12. Let U and V be subspaces of Rn and U ⊂ V . We say that the set of vectors
{v1, · · · , vp} ⊂ V is linearly independent mod U when

p∑

i=1

aivi ∈ U implies that each ai = 0.

We say that {v1, · · · , vp} is a basis of V mod U when it is linearly independent mod U and
V = U ⊕ span{v1, · · · , vp}

It is easy to find a basis of V mod U : simply choose a basis {u1, . . . , uk} for U and extend it to
a basis {u1, . . . , uk, v1, . . . , vp} for V . The vectors {v1, . . . , vp} are then a basis of V mod U .

A Jordan block of size s is an s-by-s matrix of zeros save the superdiagonal, that is populated
by ones. For example, the Jordan blocks of sizes 1, 2 and 3 are

J1 = 0, J2 =

(
0 1
0 0

)
, J3 =



0 1 0
0 0 1
0 0 0


 . (4.12)

We may now establish the fundamental result.

Proposition 4.13. If Am−1 6= 0 and Am = 0 then there exists an invertible matrix X and a
Jordan matrix J for which

X−1AX = J. (4.13)

J is the block diagonal matrix beginning with c1 Jordan blocks of size 1, c2 Jordan blocks of size
2 up through cm Jordan blocks of size m. The chain numbers, cj , are determined by the null
space dimensions, dj , via

c = Smd where Sm =




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1




(4.14)

is the stiffness matrix (recall Exer. 3.2) for the hanging elastic chain with m unit stiffnesses.

Proof: We follow the recipe,
Step 1: Choose a basis {v1m, . . . , vcmm } of N (Am) mod N (Am−1). There are cm = dm − dm−1 such
basis vectors. Each of these vectors will generate a chain of length m and a Jordan block of size m.

Step 2: If m = 1, stop. Else, apply A to the vectors constructed above, obtaining Avim ∈ N (Am−1).
Then the key point is that

{Av1m, . . . , Avcmm } is linearly independent mod N (Am−2).

Now extend these (if necessary) to a basis ofN (Am−1) modN (Am−2), by appending {v1m−1, . . . , v
cm−1

m−1 }.
Each of these new appended vectors will generate a chain of length m − 1 and a Jordan block of
size m − 1. Since we have extended a list of size cm to reach a length dm−1 − dm−2, there are
cm−1 = (dm−1 − dm−2)− (dm − dm−1) chains of length m− 1.
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Step 3: Repeat Step 2, with m replaced by m− 1.

Once the algorithm terminates, we may arrange the chosen basis as follows:

X = {v11, . . . , vc11 , Av12, v12, . . . , Avc22 , vc22 , , . . . , Ai−1v1i , . . . , v
1
i , . . . , A

i−1vcii , , . . . , v
ci
i , . . .}

and so AX = XJ where J is the block diagonal matrix beginning with c1 zeros, then c2 blocks of
size 2, then c3 blocks of size 3 up through cm blocks of size m. The formulas for cm and cm−1 in
Steps 1 and 2 are precisely those implemented by (4.14). End of Proof.

For example,

A =



1 −1 1
2 −2 2
1 −1 1




obeys A2 = 0, and has null space dimensions, d1 = 2 and d2 = 3. The proposition then dictates
that we will encounter c1 = 2d1 − d2 = 1 chain of length 1, and c2 = d2 − d1 = 1 chain of length 2.
We compute the associated basis vectors according to the recipe above. Following Step 1 we note
(any vector not in N (A) will suffice) that

v12 =



0
0
1




is a basis of N (A2) mod N (A). Step 2 leads us to

Av12 =



1
2
1




which, we are happy to confirm, indeed lies in N (A). We continue within Step 2 to complete a
basis for N (A) by appending

v11 =



0
1
1


 .

This completes all of the steps and so we assemble

X = [v11 Av
1
2 v

1
2]

and develop

AX = [0 0 x2] = XJ where J =



0 0 0
0 0 1
0 0 0


 .

We have been a little cavalier regarding the “extending” of bases. Our examples have been so small
that we have been able to proceed by visual inspection. What we need is something like a recipe.

We begin with with the decreasing shrinking sequence of column spaces

R(A) ⊃ R(A2) ⊃ · · · ⊃ R(Am−1) ⊃ R(Am) = 0

and note that
dim(N (Am) mod N (Am−1)) = n− dm−1
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is precisely the dimension of R(Am−1). Now for each pivot column yk of Am−1 we set xk to the
associated coordinate vector. It follows that Am−1xk = yk which ensures that xk 6= N (Am−1). As
the xk are linearly independent by construction, they comprise a basis for N (Am) mod N (Am−1).
As a result, Step 1 may be accomplished concretely via

Step 1’: Let pj denote the index of the jth pivot column of Am−1, where j = 1, . . . , dimR(Am−1).
Define vjm to be zero in every element except pj , where it take the value 1.

Each of the extensions in the subsequent steps may be done in a similar fashion.

4.5. Notes and Exercises

Our focus on equilibria of network equations like Sx = f in the previous two chapters lead us
to ask two questions, in this chapter, about general S. The first; for which f does there exist an x
such that Sx = f? received the answer; for those f in the column space of S. The second; when
such an x exists can there be many such x? received the answer; no, not if the null space of S is

simply the zero vector.
These answers required careful definition of the basic concepts of linear algebra; subspace, basis,

dimension and rank. We saw that subspaces are natural generalizations of lines and planes and
that the rank of a matrix is revealed by Gaussian Elimination.

Our investigation of nilpotent matrices makes use of notes of Marco Gualtieri for the theory and
notes of Idris Mercer for the large clean examples.

1. Which of the following subsets of R3 are actually subspaces? Check both conditions and show
your work.

(a) All vectors whose first component x1 = 0.

(b) All vectors whose first component x1 = 1.

(c) All vectors whose first two components obey x1x2 = 0.

(d) The vectors whose first two components obey x1 + x2 = 0..

(e) All linear combinations of the pair (1, 1, 0) and (2, 0, 1).

(f) All vectors for which x3 − x2 + 3x1 = 0.

2. Suppose M and Q are subspaces of Rn. Which of the following subsets of Rn are actually
subspaces? Check both conditions and show your work.

(a) The union of M and Q.

(b) The intersection of M and Q.

3. True or false, with justification.

(a) (1, 1, 1)T lies in the span of (1, 2, 1)T and (2, 1, 2)T .

(b) (1, 0, 1)T lies in the span of (1, 2, 1)T and (2, 1, 2)T .

(c) (1, 0, 0)T lies in the span of (1, 2, 1)T and (2, 1, 2)T .

(d) If u lies in the span of v and w then v lies in the span of u and w.

4. True or false, with justification.

(a) (1, 1, 1)T , (1, 2, 1)T and (2, 1, 2)T are linearly independent.

(b) (1, 0, 1)T , (1, 2, 1)T and (2, 1, 2)T are linearly independent.
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(c) (1, 0, 0)T , (1, 2, 1)T and (2, 1, 2)T are linearly independent.

(d) If u and v are linearly independent and v and w are linearly independent then u and w are
linearly independent.

5. Prove that if A ∈ Rn×n and has n pivots then A is invertible.

6. Prove that if the rank of A ∈ Rn×n is one then A = uvT for some u and v in Rn.

7. I encourage you to use rref and null for the following. (i) Add a diagonal crossbar between
nodes 3 and 2 in Figure 4.1 and compute bases for the column and null spaces of the new
incidence matrix. As this crossbar fails to stabilize the ladder we shall add one more bar. (ii)
To the 9 bar ladder of (i) add a diagonal cross bar between nodes 1 and the left end of bar 6.
Compute bases for the column and null spaces of the new incidence matrix.

8. Compute bases for the null and column spaces of the triangle incidence matrix, (3.34). Offer
mechanical interpretations of the null space basis vectors.

9. Compute bases for the null and column spaces of the methane incidence matrix, (3.35). Offer
mechanical interpretations of the null space basis vectors.

10. We wish to show that N (A) = N (ATA) regardless of A.

(i) We first take a concrete example. Report the findings of null when applied to A and ATA
for the A matrix associated with Figure 4.1.

(ii) For arbitrary A show that N (A) ⊂ N (ATA), i.e., that if Ax = 0 then ATAx = 0.

(iii) For arbitrary A show that N (ATA) ⊂ N (A), i.e., that if ATAx = 0 then Ax = 0. (Hint:
if ATAx = 0 then xTATAx = 0 and this says something about ‖Ax‖.)

11. Suppose that A ∈ Rm×n and N (A) = Rn. Argue that A must be the zero matrix. Hint: Prove
the contrapositive.

12. Show that if AB = 0 then R(B) ⊂ N (A).

13. Show that if Am−1v 6= 0 and Amv = 0 then the chain {v, Av, . . . , Am−1v} is linearly indepen-
dent.

14. Suppose that A ∈ Rn×n obeys Am = 0 while Am−1 6= 0. (i) Prove that (4.7) holds. (ii) Prove
that (4.8) holds.

15. Suppose that A and B are both n-by-n. Show that if one of them is invertible then AB is
similar to BA.

16. Consider the nilpotent matrix

A =




2 2 2 2 −4
7 1 1 1 −5
1 7 1 1 −5
1 1 7 1 −5
1 1 1 7 −5



.

Use Matlab to confirm that dj = dimN (Aj) = j for j = 1, . . . , 5. Conclude that A is similar
to J5. Find a basis for N (A5) mod N (A4) via Steps 1’ of §4.4. Use this basis vector to complete
the Jordan chain and write out the the full transformation matrix, X .
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5. The Fundamental Theorem and Beyond

The previous chapter, in a sense, only told half of the story. In particular, A ∈ Rm×n maps
Rn into Rm and its null space lies in Rn and its column space lies in Rm. Having seen examples
where R(A) was a proper subspace of Rm one naturally asks about what is left out. Similarly, one
wonders about the subspace of Rn that is complementary to N (A). These questions are answered
by the column space and null space of AT . This then completes the Fundamental Theorem of Linear
Algebra. We review its relevance to the problems of electrical and mechanical equilibrium and then
embark on two very useful generalizations. First to Vector Spaces and Linear Operators and then
to convex sets.

5.1. The Row Space

As the columns of AT are simply the rows of A we call R(AT ) the row space of A. More precisely

Definition 5.1. The row space of A ∈ Rm×n is the span of its rows, i.e.,

R(AT ) ≡ {ATy : y ∈ Rm}.

This is a subspace of Rn.

Regarding a basis for R(AT ) we recall that the rows of Ared ≡rref(A) are merely linear combi-
nations of the rows of A and hence

R(AT ) = R((Ared)
T ).

Recalling that pivot rows of Ared are linearly independent and that all remaining rows of Ared are
zero leads us to

Proposition 5.2. The pivot rows of Ared comprise a basis for R(AT ).

As there are r pivot rows of Ared we find that the dimension of R(AT ) is r. Recalling Prop. 4.7
we find the dimensions of N (A) and R(AT ) to be complementary, i.e., they sum to the dimension of
the ambient space, n. Much more in fact is true. Let us compute the inner product of an arbitrary
element x ∈ R(AT ) and z ∈ N (A). As x = AT y for some y we find

xT z = (ATy)Tz = yTAz = 0.

This states that every vector in R(AT ) is perpendicular to every vector in N (A).
Let us test this observation on the A matrix stemming from the unstable ladder of §3.4. Recall

that

z1 =




0
1
0
0
0
1
0
0




and z2 =




0
0
0
1
0
0
0
1



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constitute a basis for N (A) while the pivot rows of Ared are

x1 =




1
0
0
0
0
0
0
0




, x2 =




0
1
0
0
0
−1
0
0




, x3 =




0
0
1
0
0
0
0
0




, x4 =




0
0
0
1
0
0
0
−1




, x5 =




0
0
0
0
1
0
0
0




, x6 =




0
0
0
0
0
0
1
0




.

Indeed, each zj is perpendicular to each xk. As a result,

{z1, z2, x1, x2, x3, x4, x5, x6}

comprises a set of 8 linearly independent vectors in R8. These vectors then necessarily span R8.
For, if they did not, there would exist nine linearly independent vectors in R8! In general, we find

Proposition 5.3. Fundamental Theorem of Linear Algebra (Preliminary). Suppose A ∈ Rm×n

has rank r. The row space, R(AT ), and the null space, N (A), are respectively r and n − r
dimensional subspaces of Rn. Each x ∈ Rn may be uniquely expressed in the form

x = xR + xN , where xR ∈ R(AT ) and xN ∈ N (A). (5.1)

We often express (5.1) more succinctly as

Rn = R(AT )⊕N (A),

where U ⊕ V ≡ {u + v : u ∈ U, v ∈ V } denotes the direct sum of two subspaces that intersect
only at 0. As the constituent subspaces have been shown to be orthogonal we speak of Rn as the
orthogonal direct sum of R(AT ) and N (A).

We have worked with a large example that flows from a “real” problem. It is however difficult
to fully visualize the resulting spaces. So we consider

A =



1 1 1
1 −1 1
1 1 1


 (5.2)

note that its row space is spanned by

x1 =



1
1
1


 and x2 =




1
−1
1




and that its null space is spanned by

x3 =



−1
0
−1


 .

We illustrate in Figure 5.1 the complementary piercing of R(AT ) by N (A).
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Figure 5.1. A depiction of R3 = R(AT )⊕N (A) for the A of (5.2). Here a finite piece (gray) of
the R(AT ) plane is generated by ±x1 and ±x2 while the a finite piece of the N (A) line is generated
by ±x3.

5.2. The Fundamental Theorem

The Fundamental Theorem will more than likely say that Rm = R(A) ⊕ N (AT ). In fact, this
is already in the preliminary version. To coax it out we realize that there was nothing special
about the choice of letters used. Hence, if B ∈ Rp×q then the preliminary version states that Rq =
R(BT )⊕N (B). As a result, letting B = AT , p = n and q = m, we find indeed Rm = R(A)⊕N (AT ).
That is, the left null space, N (AT ), is the orthogonal complement of the column space, R(A).
The word ‘left’ stems from the fact that ATy = 0 is equivalent to yTA = 0, where y ‘acts’ on A
from the left.

In order to compute a basis for N (AT ) we merely mimic the construction of the previous section.
Namely, we compute (AT )red and then solve for the pivot variables in terms of the free ones.

With respect to the A matrix associated with the unstable ladder of §3.4, we find

AT =




1 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 −1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 1 0 0 0




and

(AT )red = rref(AT ) =




1 0 −1 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




.

We recognize the rank of AT to be 6, with pivot and free indices

{1, 2, 4, 5, 6, 7} and {3, 8}
respectively. Solving (AT )redx = 0 for the pivot variables in terms of the free we find

x7 = x8, x6 = x8, x5 = 0, x4 = 0, x2 = x3, x1 = x3,
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or in vector form,

x = x3




1
1
1
0
0
0
0
0




+ x8




0
0
0
0
0
1
1
1




.

These two vectors constitute a basis forN (AT ) and indeed they are both orthogonal to every column
of A. We have now exhibited means by which one may assemble bases for the four fundamental
subspaces. In the process we have established

Proposition 5.4. Fundamental Theorem of Linear Algebra. Suppose A ∈ Rm×n has rank r.
One has the orthogonal direct sums

Rn = R(AT )⊕N (A) and Rm = R(A)⊕N (AT )

where dim R(A) = dim R(AT ) = r, dim N (A) = n− r and dim N (AT ) = m− r.

We illustrate this result in Figure 5.2. We see A mapping Rn to R(A), a subspace of Rm and
AT mapping Rm to R(AT ), a subspace of Rn. These subspaces have the same dimensions and are
orthogonal to the respective null spaces.

R(AT )

N (A)

R(A)

N (AT )

A

AT

Figure 5.2. An illustration of the Fundamental Theorem of Linear Algebra.

Rn Rm

We will make frequient use of this Fundamental Theorem throughout the remainder of the text.
Notably, we will see at the start of the next chapter that the theory and algorithms behind the
solution of least squares problems springs entirely from the fact that Rm = R(A)⊕N (AT ).

5.3. Vector Spaces and Linear Transformations∗
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Our study has been motivated by the equations of equilibrium of electrical and mechanical
systems. We then abstracted these square systems to rectangular systems and captured the action
of an m× n matrix via its four fundamental subspaces of two Euclidean spaces, Rn and Rm. These
spaces were introduced as the collection of real vectors with n and m components respectively. It
is natural, and we shall see necessary, to abstract further to vectors of complex numbers, complex
matrices, complex functions and beyond. All of these are captured by the notion of vector space.

Definition 5.5 A vector space over the complex numbers, C, is a set V together with two
operations, one of vector addition and one of scalar multiplication, that satisfy the eight axioms
listed below. In the list below, let u, v and w be arbitrary vectors in V , and a and b arbitrary
complex numbers.

1. Associativity of vector addition, u+ (v + w) = (u+ v) + w.

2. Commutativity of vector addition, u+ v = v + u.

3. Identity element of vector addition. There exists an element 0 ∈ V , called the zero vector,
such that v + 0 = v for each v ∈ V .

4. Inverse elements of vector addition. For every v ∈ V , there exists an element −v ∈ V , called
the additive inverse of v, such that v + (−v) = 0.

5. Distributivity of scalar multiplication with respect to vector addition, c(u+ v) = cu+ cv.

6. Distributivity of scalar multiplication with respect to complex addition, (a+ b)v = av + bv.

7. Compatibility of scalar multiplication with complex multiplication, a(bv) = (ab)v.

8. Identity element of scalar multiplication, 1v = v.

If you are not familiar with complex arithmetic you may, for now, assume that V is built over
the reals, R. We will cover complex arithmetic, from the beginning, in Chapter 9. Do you see that
Rn is a vector space? Also note that the collection of m-by-n matrices is a vector space. As is
the collection of all polynomials with complex coefficients. All of the key “spatial” concepts so far
discussed in Rn, notably, subspace, basis and dimension extend naturally to all vector spaces. For
example the set of 2–by–2 upper triangular matrices is a 3 dimensional subspace of R2×2 with basis

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
0 1

)
.

If A is a rule for transforming elements of the vector space V into elements of the vector space
W we call it a linear transformation if

A(av + bw) = aAv + bAw, ∀ v ∈ V, w ∈ V, a ∈ C, b ∈ C. (5.3)

If V and W are finite dimensional, with bases {v1, v2, . . . , vn} and {w1, w2, . . . , wm} respectively
then (5.3) implies that

A(c1v1 + c2v2 + · · ·+ cnvn) = c1A(v1) + c2A(v2) + · · ·+ cnA(vn),

for arbitrary c ∈ Cn. Now, as each A(vj) ∈ W it may be expressed in terms of the wi. In particular,
we find

A(vj) = a1jw1 + a2jw2 + · · ·+ amjwm.
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And so
A(c1v1 + c2v2 + · · ·+ cnvn) = (a11c1 + a12c2 + · · ·+ a1ncn)w1

+ (a21c1 + a22c2 + · · ·+ a2ncn)w2

+ · · ·+ (am1c1 + am2c2 + · · ·+ amncn)wm.

We now view A as transforming the coefficients of the vj into the coefficients of the wi via matrix–
vector multiplication.

For example, the transformation of the plane that reflects vectors over the horizontal axis,

A(x1, x2) ≡ (x1,−x2)
is linear. In the “standard” basis,

v1 = (1, 0), v2 = (0, 1)

we find A(v1) = v1 and so a11 = 1 and a12 = 0. Similarly A(v2) = −v2 and so a21 = 0 and a22 = −1
and we arrive at the standard matrix representation

As =

(
1 0
0 −1

)
.

If instead however we choose the “tilted” basis

w1 = (1, 1), w2 = (1,−1) (5.4)

then A(w1) = w2 and A(w2) = w1 and we arrive at the tilted matrix representation

At =

(
0 1
1 0

)
.

As As and At represent the same transformation it should not be surprising that the change of
basis matrix serves as a similarity transformation between the representations. In particular, note
that

B ≡
(
1 1
1 −1

)
(5.5)

is the basis changer, i.e., w1 = Bv1, w2 = Bv2, and as a result the similarity transformation

At = B−1AsB.

This notion of basis change via similarity transformation is central to the second theme of this text,
i.e., the spectral representation of a matrix. We prepared much of the ground in Prop. 4.13 when
we proved that each nilpotent matrix is similar to a block diagonal matrix composed of null Jordan
blocks. The remaining theory will construct similarity transformations from bases of invariant
subspaces.

To be precise, we call the subset U of the vector space V an invariant subspace of the linear
transformation A if Au ∈ U for each u ∈ U . For example, the invariant subspaces of

A =

(
2 −1
−1 2

)
(5.6)

are span (w1) and span (w2) where w1 and w2 are the tilted basis in (5.4). In this case the B in
(5.5) yields

B−1AB =

(
1 0
0 3

)
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and we say that B diagonalizes A.

5.4. Linear Inequalities and Convex Sets∗

Convex sets are natural generalizations of subspaces and so worthy of study in their own right.
Beyond mere generalization we will use a simple question about mixing of elements in the inner
product, xTy, to motivate the study of convex sets and to illustrate some of their amazing properties.

Given A and b, to know whether there exists an x such that Ax = b we need only know whether
b lies in the span of the columns of A. In a number of important applications we desire additional
properties of x. The simplest of these being that x ≥ 0, by which we mean that each element of x
is nonzero. The question of the existence of nonnegative x for which Ax = b is then answered by
whether b lies in the cone of A, i.e., in

cone(A) ≡ {Ax : x ≥ 0}.
Of course this is more like naming the answer rather than providing an answer. The fundamental
theorem of linear algebra helped us out of the related word game by identifying R(A) with the
orthogonal complement ofN (AT ). This observation is often expressed as a Fredholm Alternative

Proposition 5.6. Given A ∈ Rm×n and b ∈ Rm precisely one of these alternatives pertains.
(1) There exists an x ∈ Rn such that Ax = b.
(2) There exists a y ∈ Rm such that ATy = 0 and yT b 6= 0.

This says that either b lies in the span of the columns of A or b is not orthogonal to element of the
left null space of A. In asking then for conditions on b such that there exists an x ≥ 0 such that
Ax = b, beyond the tautological b ∈ cone(A), we find the Farkas Alternative.

Proposition 5.7. Given A ∈ Rm×n and b ∈ Rm precisely one of these alternatives pertains.
(1) There exists an x ∈ Rn such that x ≥ 0 and Ax = b.
(2) There exists a y ∈ Rm such that yTA ≥ 0 and yT b < 0.

This says that either b lies in the cone of the columns of A or there exists a subspace that separates
b from the columns of A. Before proving this alternative we illustrate its new terms in the case that

A =

(
−1 3
1 1

)
.

To find cone(A) we now solve Ax = b and derive conditions on b that guarantee that x ≥ 0.
Gaussian elimination in column 1 brings −x1 + 3x2 = b1 and 4x2 = b1 + b2. Back substitution then
yields x2 = (b1 + b2)/4 and x1 = (3b2 − b1)/4. Hence

cone(A) = {b ∈ R2 : b1 + b2 ≥ 0 & 3b2 ≥ b1}.
We see in Figure !!!! that cone(A) is indeed the shaded cone “between” the columns of A and that
it coincides with the intersection of half spaces.

For b 6∈ cone(A), e.g., b = (3, 0)T we note that the line through y⊥ = (3, 1/2)T separates b from
the columns of A in the sense that, with y = (−1/2, 3)T ,

yT b = −3/2, yTA = (7/2, 3/2).
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In general, if b 6∈ cone(A) then b 6∈ Hi

We now take up the proof of the Farkas Alternative.

Proof: If (1) and (2) both hold then xTATy = yT b and yet the right side is negative while the left
is nonnegative. This shows that (1) and (2) can not both be true.

Now (1) is true iff b ∈ cone(A) and so it suffices to show that if b 6∈ cone(A) then (2) holds.

The mixing question asks, given a nonnegative, nonincreasing vector x ∈ Rn, i.e.,

x1 ≥ x2 ≥ · · ·xn ≥ 0, (5.7)

and a second nonnegative vector, y ∈ Rn, how should I mix the elements of y in order to maximize
its interaction with x? To mix the elements of y we mean to multiply it by a doubly stochastic
matrix, i.e., a matrix with nonnegative elements such that each row and column sum to 1. In
symbols, D belongs to DSn, the class of doubly stochastic matrices of size n, when

each di,j ≥ 0,

n∑

i=1

di,j = 1 and

n∑

j=1

di,j = 1. (5.8)

With this preparation we can now properly pose and answer the mixing question.

Proposition 5.8. Mixing Theorem. If x and y are two nonnegative, nonincreasing vectors in
Rn then

xTDy ≤ xT y ∀ D ∈ DSn. (5.9)

This states that the interaction between two nonnegative vectors is greatest when they are
similarly ordered. This type of result is central to the field of Quantum Information Theory where
tools for quantifying disorder, or entropy, are required. We will derive the Mixing Theorem as a
consequence of

Proposition 5.9. Birkhoff’s Theorem. Every doubly stochastic matrix can be written as a
convex combination of permutation matrices.

A matrix is a permutation matrix if it can be achieved by interchanging columns of the
identity matrix. Or equivalently, if it is a product of the elementary permutation matrices defined
in §3.2. We will denote the class of n-by-n permutation matrices by Pern.

Finally a convex combination of objects is simply a linear combination in which each of
the coefficients is nonnegative and for which their sum is 1. For example the proof of Birkhoff’s
Theorem, in the 2–by–2 case, is the one–liner

(
d 1− d

1− d d

)
= d

(
1 0
0 1

)
+ (1− d)

(
0 1
1 0

)
, 0 ≤ d ≤ 1, (5.10)

for the matrix on the left is the most general doubly stochastic matrix in DS2 while the two matrices
on the right are the only permutations in Per2. To prove Birkhoff’s Theorem in general will require
a deeper understanding of convex sets. With that motivation we now begin with

Definition 5.10. The subset C of a vector space is said to be convex if whenever c1 and c2 lie
in C so too does the chord between them, i.e, tc1 + (1− t)c2 ∈ C for every 0 < t < 1.
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Please confirm that DSn is convex. Birkhoff’s Theorem says, in a sense, that the permutation
matrices are the corners, or vertices, of the class of doubly stochastic matrices. This notion is made
precise by

Definition 5.11. A point c in a convex set C is called an extreme point of C if it does not
lie on any chord in C. That is, if there do not exist distinct c1 and c2 in C and a 0 < t < 1 for
which c = tc1 + (1− t)c2.

Our proof that Pern is the set of extreme points of DSn will follow from the polyhedral nature
of DSn. A polyhedron is the intersection of a finite number of half spaces. A half space is the
set of points lying on one side of a hyperplane and a hyperplane in Rn is a fixed translate of all
vectors orthogonal to some nonzero fixed a ∈ Rn. In symbols, a hyperplane in Rn is

{x ∈ Rn : aTx = b}.

Here b ∈ R specifies the amount that the subspace a⊥ is to be translated. It follows that the
associated half spaces are

{x ∈ Rn : aTx ≤ b} and {x ∈ Rn : aTx ≥ b}.

The intersection of m half spaces, individually parametrized by ai and bi, describes the general
polyhedron

P =
m⋂

i=1

{x ∈ Rn : aTi x ≤ bi}.

It is customary to lay these aTi into the rows of a matrix, A ∈ Rm×n, and to collect the bi into a
vector b ∈ Rn. In that way we arrive at the concise definition of a polyhedron as

P ≡ {x ∈ Rn : Ax ≤ b}, where A ∈ Rm×n and b ∈ Rm. (5.11)

For example, the triangle in Figure 5.3 is specified by

A =



−1 0 0
0 −1 0
1 1 0


 and b =



0
0
1


 . (5.12)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0
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x
1

x
2

Figure 5.3. The intersection of the three half spaces parametrized by (5.12).
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We intuitively expect the extreme points of the triangle in Figure 5.3 to lie at the three vertices.
Geometrically these occur at the intersection of any two of the defining hyperplanes. Algebraically
this means that two (distinct) rows in Ax ≤ b actually hold with equality. The general form of this
statement looks like

Proposition 5.12. For a polyhedron, P, described by (5.11), a vector x is an extreme point of
P iff n linearly independent inequalities of the system Ax ≤ b are equalities at x.

Proof: . Let aTi , i = 1, . . . , m, be the rows of A. Suppose that x is an extreme point of P, and
let I be the set of those indices i for which aTi x = bi and set A = span{ai : i ∈ I}. If A 6= Rn

then there exists a nonzero vector h ∈ A⊥. We will use this to find a t > 0 for which the segment
St = [x− th, x+ th] ⊂ P. This will contradict the assumption that x is an extreme point of P and
so prove that A = Rn. For i ∈ I as h ⊥ A it follows that aTi (x± th) = bi for all t > 0. To handle
the other rows we define

t0 ≡ min
i 6∈I

bi − aTi x

|aTi h|
> 0

and note for t < t0,

aTi (x± th) ≤ aTi x+ t0|aTi h| ≤ aTi x+
bi − aTi x

|aTi h|
|aTi h| = bi ∀ i 6∈ I.

This yields the desired contradiction, St0 ⊂ P.
Conversely let us prove that ifA = Rn then x is an extreme point. We show that if x = tp+(1−t)q

for p and q in P and 0 < t < 1 then p = q. Note that for each i ∈ I

bi = aTi x = taTi p + (1− t)aTi q ≤ bi

and so equality holds and so aTi p = aTi q = bi and so (p− q) ⊥ A and so p = q. End of Proof.

With this criterion we can now identify the extreme points of the set of doubly stochastic matrices.

Proposition 5.13. Pern is the set of extreme points of DSn.

Proof: We have already observed that each P ∈ Pern is an extreme point of DSn. To prove the
converse, we note that only 2n − 1 of the 2n sums in (5.8) are independent. Now let us prove
the claim by induction in n. The base case n = 2 has been verified by (5.10). Let us justify
the inductive step from n − 1 to n. Thus, let X be an extreme point of DSn. By the preceding
Proposition, among the constraints defining DSn (i.e., 2n− 1 equalities and n2 inequalities dij ≥ 0)
there should be n2 linearly independent which are satisfied at X as equations. Thus, at least
n2 − (2n− 1) = (n− 1)2 entries in X should be zeros. It follows that at least one of the columns of
X contains at most one nonzero entry (since otherwise the number of zero entries in X would be at
most n(n− 2) < (n− 1)2). Thus, there exists at least one column with at most 1 nonzero entry. As
the sum of entries in this column is 1, this nonzero entry, say Xi′j′, is equal to 1. Since the entries
in row i′ are nonnegative and sum to 1 it follows that Xi′j′ is the only nonzero in row i′. Removing
row i′ and column j′ from X produces an X ′ ∈ DSn−1. By the inductive hypothesis, this X ′ is a
convex combination of elements of Pern−1. Augmenting X ′ and each of these permutation matrices
by the column and the row removed from X we recover X as a convex combination of elements of
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Pern. But as X is an extreme point this combination must degenerate to a single summand, i.e.,
X is a single permutation matrix. This completes the inductive step. End of Proof.

Our definition presumes that extreme points of a set are members of the set. So, for example,
the open interval (0, 1) has no extreme points. To curtail this in general we will assume that our
convex set is closed. That is, the limit of every convergent sequence drawn from C has a limit in
C. Please confirm that DSn is closed and that each element of Pern is an extreme point of DSn. To
complete the proof of Birkhoff’s we need to know that the elements of a convex set can always be
expressed as convex combinations of its extreme points. This is answered by

Proposition 5.14. Krein Millman. If C ⊂ Rn is bounded, closed, nonempty and convex then
each point in C is a convex combination of the extreme points of C.

We will prove this by induction on the dimension of C. We note that the “ambient” dimension
of DS2 is 4, as it lies in the class of 2–by–2 matrices. As a set however it is the simple chord (5.10)
– and hence it appears that the true dimension of DS2 is 1. To generalize our notion of dimension
we first generalize our notion of span.

The Affine span is the usual span subject to the additional constraint that the coefficients sum
to one. For example the affine span of DS2 is the line

Aspan(DS2) =

{(
d 1− d

1− d d

)
: d ∈ R

}
.

It is a line in the sense that it simply extends the chord defined in (5.10). To see its dimension we
note that every affine span is merely a shifted, or translated, subspace. As such, for an arbitrary
element s ∈ Aspan(C), we define

Shift(Aspan(C)) ≡ {c− s : c ∈ Aspan(C)}. (5.13)

Returning to DS2 we from Aspan(DS2) pick

s =

(
0 1
1 0

)
and find Shift(Aspan(DS2)) =

{
d

(
1 −1
−1 1

)
: d ∈ R

}
,

and recognize this to be a classical one dimensional subspace of R2×2. We will prove in Exer. 5.16
that Shift(Aspan(C)) is always a subspace – and that this subspace does not depend on the choice
of s. This then justifies our definition of Affine dimension

Adim(C) ≡ dim(Shift(Aspan(C))). (5.14)

From this definition it follows, for example, that Adim(DSk) = (k − 1)2.
The Affine span is also the crucial notion in defining the boundary of a closed convex set. We

first define the Affine Interior of a convex set C ⊂ Rn to be all those points c ∈ C for which C
also contains a restricted ball around c – where the restriction is to Aspan(C). More precisely,

Aint(C) ≡ {c ∈ C : ∃ r > 0 such that if x ∈ Aspan(C) and ‖x− c‖ < r then x ∈ C}.
With this we define the Affine boundary of the closed convex C to be those points left in C when
we exclude its Affine interior. That is,

Abdry(C) ≡ C \ Aint(C) = {x ∈ C : x 6∈ Aint(C)}.

73



For example, please confirm that

Aint(DS2) =

{
d

(
1 0
0 1

)
+ (1− d)

(
0 1
1 0

)
: 0 < d < 1

}
and

Abdry(DS2) =

{(
1 0
0 1

)
,

(
0 1
1 0

)}
.

(5.15)

The inductive step requires a beautiful geometric construction, see Figure 5.4, that makes definite
the sense in which linear algebra supports convex geometry. It hinges on the following

Lemma 5.15. If C is closed and convex and d 6∈ C then there exists a unique closest point in C
to d.

Proof: The distance from C to this point is the least distance between d and any point of C. That
is

dist(C, d) = inf
c∈C

‖c− d‖,

where inf denotes the gteatest lower bound. Build a sequence by choosing ck ∈ C such that
‖ck − d‖ < dist(C, d) + 1/k. Now

‖ck‖ = ‖(ck − d) + d‖ ≤ ‖ck − d‖+ ‖d‖ ≤ dist(C, d) + 1 + 1/k.

This bound then establishes a subsequence, {cnk
} ⊂ {ck} and a limit c such that cnk

→ c. As C
is closed it follows that c ∈ C. By construction it follows that ‖cnk

− d‖ → ‖c − d‖ = dist(C, d).
If there are two closest points, c1 and c2 then the midpoint m = (c1 + c2)/2 ∈ C. As ‖d − m‖ is
the height of the isocoles triangle with vertices d, c1 and c2 it follows that ‖d −m‖ < ‖d− c1‖, in
contradiction of c1. hence, the closest point is unique. End of Proof.

dc

H(1)

H(2/3)

H(1/3)C

Figure 5.4. Illustration of the hyperplane H(1) that supports the truncated disk, C, at c.
Given the point d, its closest point in C is c. The separating hyperplanes, H(1/3) and H(2/3), are
described in (5.17).
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Proposition 5.16. If C ⊂ Rn is closed, bounded and convex and c ∈ Abdry(C) then there exists
a nonzero vector a ∈ Rn such that

aT c ≤ aT c ∀ c ∈ C. (5.16).

The associated hyperplane
H = {y ∈ Rn : aT y = aT c}

is said to support C at c. (See Figure 5.4.)

Proof: There exists a sequence of points, dn ∈ Aspan(C)\C such that dn → c. Let cn be the unique
closest point in C to dn.

Now define the vector, scalar (parametrized by 0 < t < 1) and hyperplane

an = dn − cn,

bn(t) = (1− t)‖dn‖2 − t‖cn‖2 + (2t− 1)cTndn,

Hn(t) = {x : aTnx = bn(t)}.
(5.17)

We now prove that Hn(t) separates C and dn in the sense that

fn(x, t) ≡ aTnx− bn(t) = (dn − cn)
T (x− dn) + t‖cn − dn‖2

= (dn − cn)
T (x− cn)− (1− t)‖cn − dn‖2

(5.18)

takes different signs in C and dn, for fixed t. Using the top form of (5.18) we find that fn(d, t) > 0.
To see that fn(x, t) < 0 for x ∈ C suppose otherwise, i.e., that there exists a u ∈ C such that
f(u, t) > 0. In this case, by the bottom form of (5.18), it follows that (d − c)T (u − c) > 0. So we
consider g(ε) ≡ ‖εu+ (1− ε)c− d‖2 and find that

g′(0) = 2(c− d)T (u− c) < 0

and so g is decreasing at zero and there is a small 0 < ε0 < 1 such that g(ε0) < g(0) but this means
‖ε0u+ (1− ε0)c− d‖ < ‖d− c‖ which contradicts the definition of c.

Now slide t as illustrated in Figure 5.4. In particular as t→ 1 we find that H(1) supports C at
c in the sense that b(1) = cTd− ‖c‖2 = aT c and so

H(1) = {x : aTx = aT c}
and aT c ≤ aT c for all c ∈ C. Now finally slide d along this line to c and observe that every point
in Abdry(C) has a supporting hyperplane. End of Proof.

The inductive utility of this construction is indicated in Figure 5.4. In particular, while Adim(C) =
2 we find Adim(H(1)∩C) = 1 and the two extreme points of H(1)∩C, indicated by the unlabeled
asterisks, are also extreme points of C. Of course this is just a picture. We must prove

Proposition 5.17. Suppose that C is nonempty closed convex set and that H is a hyperplane
that supports C at c ∈ Abdry(C). If y is an extreme point of H ∩ C then y is an extreme point
of C.

Proof: Let a be the direction associated with H = {y ∈ Rn : aTy = aT c}, so that

aT c ≤ aT c ∀c ∈ C. (5.19)
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Assume that y is an extreme point of H ∩ C, but can be written as a proper convex combination
in C, i.e.,

y = λc1 + (1− λ)c2, 0 < λ < 1 (5.20)

for some c1, c2 ∈ C. We will now argue that c1 and c2 lie in H and the use the fact that y is an
extreme point of H ∩ C to conclude that c1 = c2 = y.

As y ∈ H it follows from (5.19) that

aTy = aT c ≥ max{aT c1, aT c2}
while (5.20) requires

aT y = λaT c1 + (1− λ)aT c2.

The latter is however strictly less than max{aT c1, aT c2} unless aT c1 = aT c2 = aTy. These equalities
state that each cj ∈ H , and, as we had already presumed cj ∈ C it follows that each cj ∈ H ∩ C.
But now, since y is an extreme point of H ∩C it follows that (5.20) can only imply that c1 = c2 = y
and hence we have shown that y is an extreme point of C. End of Proof.

We now have all of the ingredients necessary to prove the Krein–Millman Theorem.

Proof of Prop. 5.14. As the extreme points of C lie in C and C is convex it follows that the convex
combinations of extreme points also lie in C. So it remains to show that every c ∈ C is a convex
combination of extreme points of C.

We use induction on the affine dimension of C. The case Adim(C) = 1 has already been
established by our explicit study of DS2. We assume then that the statement in question is valid
for all convex, closed, and bounded sets with affine dimension k, and let C be a convex, closed, and
bounded set with Adim(C) = k + 1.

Given c ∈ C we choose a nonzero direction h ∈ Rn and form the line

ℓ = {c+ λh : λ ∈ R} h 6= 0.

Moving along this line from c in each of the two possible directions, we eventually leave C (since C
is bounded). Hence there exist λ+ > 0 and λ− < 0 such that

c± = c+ λ±h ∈ Abdry(C).

As c lies on the chord from c− to c+ it follows that c is a convex combination of c+ and c−. It
remains then to confirm that c± are themselves convex combinations of the extreme points of C.

We denote by H+ a hyperplane that supports C at c+. The set H+∩C (which clearly is convex,
closed and bounded) is of affine dimension k; by the inductive hypothesis, the point c+ of this set
is a convex combination of extreme points of the set, and by Prop. . 5.17 all these extreme points
are extreme points of C as well. Thus, c+ is a convex combination of extreme points of C. Similar
reasoning is valid for c−. End of Proof.

Birkhoff’s Theorem now follows directly from Props. 5.12 and 5.14. Regarding the Mixing
Theorem we note that if x and y are nonnegative and nonincreasing then, by direct inspection
(write it out)

xTPy ≤ xT y ∀ P ∈ Pern. (5.21)

Now, by Birkhoff’s Theorem, if D ∈ DSn then there exist m permutation matrices, Pi, and m
nonnegative λi that sum to one, such that

D =

m∑

i=1

λiPi.
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To this we apply xT from the left and y from the right and deduce from (5.21) that

xTDy =
m∑

i=1

λix
TPiy ≤

m∑

i=1

λix
Ty = xTy,

as claimed by the Mixing Theorem.

5.5. Tensegrities

We consider the concrete prismatic tensegrity T3 (of Zhang Guest Ohsaki) with 6 nodes, 3 lateral
struts, 3 lateral cables, and 3 horizontal bottom cables and 3 horizontal top cables. When the top
is shifted by a from the bottom our nodes are at

p0 = (r cos(π/3− a), r sin(π/3− a), 0)

p1 = (r cos(π − a), r sin(π − a), 0)

p2 = (r cos(5π/3− a), r sin(5π/3− a), 0)

p3 = (r cos(π/3), r sin(π/3), 1)

p4 = (r cos(π), r sin(π), 1)

p5 = (r cos(5π/3), r sin(5π/3), 1)

and so the edge matrix (following Williams 2.30) reads

Π(a) =

















p0 − p1 0 p0 − p2 0 0 0 p0 − p4 0 0 p0 − p3 0 0
p1 − p0 p1 − p2 0 0 0 0 0 p1 − p5 0 0 p1 − p4 0

0 p2 − p1 p2 − p0 0 0 0 0 0 p2 − p3 0 0 p2 − p5
0 0 0 p3 − p4 0 p3 − p5 0 0 p3 − p2 p3 − p0 0 0
0 0 0 p4 − p3 p4 − p5 0 p4 − p0 0 0 0 p4 − p1 0
0 0 0 0 p5 − p4 p5 − p3 0 p5 − p1 0 0 0 p5 − p2

















A smooth function t 7→ q(t) where q(0) = p is called a motion from p. It is called admissible if it
does not change the length of bars and does not stretch any cable. The motion is called rigid if

q(t) = Q(t)p + r(t), where Q(t)TQ(t) = I and det(Q(t)) = 1. (5.22)

Definition 5.18. The placement p is stable when the only motion from p is rigid.

Proposition 5.19. If p is a stable placement then there is a nonzero proper prestress for p.

The prestress vector ω lies in its null space. In tensegrity.m we find the product of the pivots
of Π(a) to be

729

32
(3 sin(a)−

√
3 cos(a))

hence the shift a = π/6 gives rise to the prestress

ω =



ones(6, 1)/

√
3

−ones(3, 1)
ones(3, 1)



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This prestress generates the stress matrix

Ω =
∑

e

ωeBe

where, e.g.,

B1 =




I −I 0 0 0 0
−I I 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




and B2 =




I 0 −I 0 0 0
0 0 0 0 0 0
−I 0 I 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




and so with s = 1/
√
3

Ω =




2sI −sI −sI −I I 0
−sI 2sI −sI 0 −I I
−sI −sI 2sI I 0 −I
−I 0 I 2sI −sI −sI
I −I 0 −sI 2sI −sI
0 I −I −sI −sI 2sI




Proposition 5.20. If p has a strict prestress then N (ΠT ) is the space of admissible velocities.

A velocity is called rigid if it is the derivative of a rigid motion (5.22), at t = 0. So suppose
Q(t) = I + tW +O(t2) and r(t) = tv +O(t2) then

q′(0) = Wp+ v. (5.23)

The constraint that QT (t)Q(t) = I of course constrains W that appear in (5.23). In particular,

(I + tW +O(t2))T (I + tW +O(t2)) = I ⇒W T = −W. (5.24)

A flexure is an element of N (ΠT ) that is orthogonal to every rigid velocity.

Proposition 5.21. The placement p is stable if there exists a flexure, v for which vTΩv > 0.

So we compute the flexures of T3. Let {v1, . . . , v7} form a basis for N (ΠT ) and {w1, . . . , w6} for
a basis for Vrig. The flexure coefficients lie in the null space of G ∈ R6×7 where

Gij = wTi vj.

We solve Gx = 0 and arrive at the flexure

v =

7∑

j=1

xivi = (−1, s,−1,−1,−s,−1, 2, 0,−1, s,−1, 1, 0, 2, 1,−s,−1, 1)T (5.25)

where s =
√
3 and we then compute vTΩv = 48

√
3 and conclude stability.
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In order to prove the two propositions it will be helpful to normalize our class of tensegrities.

Proposition 5.22. Let the tensegrity have at least one bar, b = 1 − 2, and at least two edges.
Given a placement p there is exactly one p∗ ∈ Euc(p) such that p1 = (0, 0, 0), p2 = (x2, 0, 0)
and p3 = (x3, y3, 0) where y3 > 0.

Proof: We introduce the right–handed ordered triple of orthonormal vectors, e, f , g in R3 such that

p2 = p1 + µe and p3 = p1 + νe + φf .

We then construct the proper orthogonal

Q = e1e
T + e2f

T + e3g
T and r = −Qp1,

where ej is the jth column of the the 3-by-3 I. And set p∗ = Q(p − p1) and check that indeed
p∗
1 = Q(p1 − p1) = 0 and p∗

2 = Q(p2 − p1) = µQe = µe1 and p∗
3 = Q(p3 − p1) = Q(νe + φf) =

νe1+φe2. This point is unique in Euc(p), as the rigid motion that carries the first placement to the
second must leave nodes 1 and 2 on the x-axis; a rotation which carries node 3 into a new position
must leave the axis fixed and hence move node 3 from the plane. End of Proof.

Definition 5.23. For a given set of nodes 1,2,3, the class of all placements have the properties
in Prop. 5.22 is denoted Rep.

Proposition 5.24. Rep is an affine subspace of R3N with tangent space

U = {v ∈ R3N : v1 = 0, vT2 e2 = vT2 e3 = 0, vT3 e3 = 0}. (5.26)

Proposition 5.25. For any p∗ ∈ Rep, U ⊕ V̌R = R3N , that is

U + V̌R = R3N and U ∩ V̌R = ∅.

Proof: Given v ∈ R3N we construct u ∈ U and r ∈ V̌R such that u + r = v. From the three
conditions on u it follows that

r1 = v1, r2(2) = v2(2), r2(3) = v2(3) and r3(3) = v3(3). (5.27)

Now as r ∈ V̌R(p
∗) we need r = Wp∗ + b where W is skew

W = w3e1 × e2 + w2e1 × e3 + w1e2 × e3.

Now, as p∗
1 = 0 we find b = r1 = v1. Next p

∗
2 = λex with λ > 0 brings

r2 = Wp∗
2 + b = λWe1 + v1 = −λwze3 − λwye3 + v1.

To reconcile this with (5.27) brings

wz = (v1(2)− v2(2))/λ and wy = (v1(3)− v2(3))/λ.

Similarly, p∗
3 = µe1 + νe2 with ν > 0 so

r3 = νwze1 − µwze2 − (µwy + νwx)e3 + v1
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which we reconcile with (5.27) and solve for

wx =
v1(3)− v3(3)− µwy

ν
.

It follows that u ≡ v − r ∈ U . End of Proof.

Proposition 5.26. A placement p∗ ∈ Rep is stable iff there are no admissible motions from p∗

that remain in Rep.

Proof: If p∗ is stable then the only admissible motions starting from p∗ are rigid motions. But no
rigid motions stay in Rep.

If p∗ is not stable then there exists a non-rigid admissible q(t) from p∗. But we can use

q∗(t) = Q(t)(q(t)− q1(t)) (5.28)

to construct an equivalent motion from p∗. It is admissible, since the rigid mappings used in the
construction all conserve lengths. Existence of this motion will show p∗ unstable, once we verify
that the construction does not create a constant-valued motion. But were it constant,

q∗(t) = Q(t)(q(t)− q1(t)) = p∗

and hence q(t) = Q(t)Tp∗ + q1(t) would be a rigid motion. End of Proof.

Proposition 5.27. A placement p is stable iff its equivalent p∗ ∈ Rep is stable.

Proof: Suppose the motion q(t) starts from p and is admissible but not rigid. We convert it into a
mtion in Rep from p∗.

End of Proof.

Proposition 5.28. If p∗ ∈ Rep is rigidly equivalent to p with rotation Q, and if velocities and
accelerations are related by (*** and (*** then

Bep
∗ · v∗ = Bep · v

and
Bev

∗ · v∗ +Bep
∗ · a∗ = Bev · v +Bep · a.

Hence the placement p is second order stable iff its equivalent p∗ ∈ Rep is second order stable.

5.6. Notes and Exercises

Our discussion of convex sets follows Ben-Tal and Nemirovski (2001). For a simpler proof of the
Mixing Theorem and an introduction to the broader field of rearrangements see ?.

1. True or false: support your answer.

(i) If A is square then R(A) = R(AT ).

(ii) If A and B have the same four fundamental subspaces then A=B.
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2. Construct bases (by hand) for the four subspaces associated with

A =

(
1 1 −1
1 0 −1

)
.

Also provide a careful sketch of these subspaces.

3. Show that if AB = 0 then R(B) ⊂ N (A).

4. Why is there no matrix whose row space and null space both contain the vector [1 1 1]T ?

5. Write down a matrix with the required property or explain why no such matrix exists.

(a) Column space contains [1 0 0]T and [0 0 1]T while row space contains [1 1]T and [1 2]T .

(b) Column space has basis [1 1 1]T while null space has basis [1 2 1]T .

(c) Column space is R4 while row space is R3.

6. One often constructs matrices via outer products, e.g., given v ∈ Rn let us consider A = vvT .

(a) Show that v is a basis for R(A),

(b) Show that N (A) coincides with all vectors perpendicular to v.

(c) What is the rank of A?

(d) Show that if ‖v‖ = 1 then A2 = A and tr(A) = 1.

7. Show that invariant subspaces are indeed subspaces. That is, given a vector space V and a
linear transformation A from V to V and a set U ⊂ V such that for each u ∈ U it follows that
Au ∈ U , show that U is a subspace.

8. Show that the w1 and w2 in (5.4) are indeed invariant vectors of the A in (5.6). That is, show
that each Awj is proportional to wj.

9. The matrix

Re1,θ =



1 0 0
0 cos θ sin θ
0 − sin θ cos θ




rotates each points in R3 by θ radians about the e1 = (1, 0, 0) axis. If instead we wish to rotate
points about the unit vector v1 then we choose a unit vector, v2, orthogonal to v1 and then
use the cross product, v3 = v1 × v2 to define the third. Consider the matrix V = [v1 v2 v3] and
show that

(a) V TV = I, and so, as vj = V ej it follows that ej = V Tvj .

(b) With V as the change of basis matrix show that

Rv1,θ = V Re1,θV
T , (5.29)

is indeed rotation about v1 by θ.

10. Let ℘n denote the set of complex polynomials of degree n,

℘n ≡ {c1zn + c2z
n−1 + · · ·+ cnz + cn+1 : cj ∈ C}.

Let D denote differentiation with respect to z.
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(a) Show that D is a linear transformation from ℘n to ℘n−1.

(b) Choose bases for ℘n and ℘n−1 from the columns of the identity matrices of order n+1 and
n respectively and express the matrix representation of D.

11. Show that DSn, the set of doubly stochastic n-by-n matrices, defined in (5.8), is convex and
closed.

12. Show that the ball B ≡ {v ∈ Rn : ‖v‖ ≤ 1} is convex and closed. Show that its set of extreme
points is S ≡ {v ∈ Rn : ‖v‖ = 1}. For each v ∈ S show that {y ∈ Rn : vTy = 1} is the
supporting hyperplane to B at v.

13. Generalize the previous exercise by supposing that A ∈ Rn×n is symmetric and positive definite
and c > 0. Show that the B ≡ {v ∈ Rn : vTAv ≤ c} is convex and closed and that its set of
extreme points is S ≡ {v ∈ Rn : vTAv = c}.

14. Show that {A ∈ Rn×n : |trA| ≤ 1} is convex. Draw this set when n = 2 and identify its four
extreme points.

15. In applications to metabolic networks we will see that its natural to suppose that each of our
unknowns is nonnegative. Show that if S ∈ Rm×n and f ∈ Rm then {v ∈ Rn : Sv = f, v ≥ 0}
is a polyhedron.

16. Prove that Shift(Aspan(C)), as defined in (5.13), is a subspace – and that this subspace does
not depend on the choice of s.

17. Show that Adim(DSn) = (n− 1)2.

18. The Mixing Theorem states that rearrangements with similar order maximize the inner prod-
uct. Show that rearrangements with opposite order minimize the inner product.
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6. Least Squares

We learned in the previous chapter that for a given A ∈ Rm×n, the equation Ax = b need not
possess a solution when the number of rows of A exceeds its rank, i.e., when r < m. We detail
two natural engineering contexts, where material parameters are to be inferred from experiment,
in which the governing A matrix has r < m, and offer probabilistic and statistical interpretations.
To resolve the inconsistent system Ax = b we project the faulty b into the column space of A
and proceed to solve the consistent, so-called normal equations, ATAx = AT b. We then develop
the associated theory of projection matrices and show how this permits us to transform linearly
independent collections of vectors into orthonormal collections.

This theory has many, far reaching applications. Among these we have chosen to focus on
Orthogonal Polynomials, Detecting Integer Relations, and constructing autoregressive models of
stationary time series.

6.1. The Normal Equations

When faced with a matrix A and vector b 6∈ R(A), the goal is to choose x such that Ax is as
close as possible to b. Measuring closeness in terms of the sum of the squares of the components
we arrive at the least squares problem of minimizing

‖Ax− b‖2 ≡ (Ax− b)T (Ax− b) (6.1)

over all x ∈ Rn. The path to the solution is illuminated by the Fundamental Theorem. More
precisely, we write

b = bR + bN where bR ∈ R(A) and bN ∈ N (AT ).

On noting that (i) (Ax − bR) ∈ R(A) for every x ∈ Rn and (ii) R(A) ⊥ N (AT ) we arrive at the
Pythagorean Theorem

‖Ax− b‖2 = ‖Ax− bR − bN‖2 = ‖Ax− bR‖2 + ‖bN‖2, (6.2)

As bN is what it is, (6.2) states that the best x is the one that satisfies

Ax = bR. (6.3)

As bR ∈ R(A) this equation indeed possesses a solution. We have yet however to specify how one
computes bR given b. Although an explicit expression for bR, the so called orthogonal projection
of b onto R(A), in terms of A and b is within our grasp we shall, strictly speaking, not require it.
To see this, let us note that if x satisfies (6.3) then

Ax− b = Ax− bR − bN = −bN . (6.4)

As bN is no more easily computed than bR you may claim that we are just going in circles. The
‘practical’ information in (6.4) however is that (Ax− b) ∈ N (AT ), i.e., AT (Ax− b) = 0, i.e.,

ATAx = AT b. (6.5)

As AT b ∈ R(AT ) regardless of b this system, often referred to as the normal equations, indeed
has a solution. This solution is unique so long as the columns of ATA are linearly independent, i.e.,
so long as N (ATA) = {0}. Recalling Exer. 4.10, we note that this is equivalent to N (A) = {0}.
We summarize our findings in
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Proposition 6.1. Suppose that A ∈ Rm×n. The set of x ∈ Rn for which the misfit ‖Ax− b‖2 is
smallest is composed of those x for which

ATAx = AT b.

There is always at least one such x. There is exactly one such x if and only if N (A) = {0}.

As a concrete example, we take

A =



1 1
0 1
0 0


 and b =



1
1
1


 . (6.6)

and plot R(A) and the associated decomposition of b in Figure 6.1.
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Figure 6.1. Decomposition of b = bR + bN into its column space and left null space components.

As this b 6= R(A) there is no x such that Ax = b. Indeed,

‖Ax− b‖2 = (x1 + x2 − 1)2 + (x2 − 1)2 + 1 ≥ 1,

with the minimum uniquely attained at

x =

(
0
1

)
,

in agreement with the unique solution of (6.5), for

ATA =

(
1 1
1 2

)
and AT b =

(
1
2

)
.

We now recognize, a posteriori, that

bR = Ax =



1
1
0



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is the orthogonal projection of b onto the column space of A.
We consider a more typical example, attempting to determine the neuronal membrane conduc-

tance, G, and reversal potential, E, by fitting Ohm’s law for the putative neuronal membrane
current,

b = G(v − E), (6.7)

where we have m current measurements, bj , at m prescribed voltage levels, vj . The key step is to
recognize (6.7) as an m-by-2 system of equations for the unknown biophysical parameters x1 = G
and x2 = GE, via

vjx1 − x2 = bj , j = 1, . . . , m

and to translate this into the least squares problem Ax = b where

A =




v1 −1
v2 −1
...

...
vm −1


 .

We illustrate this in Figure 6.2 on noisy synthetic data generated by the “true values”, G = 1.2mS
and E = −70mV . We suppose we have 21 accurate voltage measurements, between −75mV and
−65mV in steps of 0.5mV . We then generate the 21 true values of b via (6.7) and then soil these
with randn noise.

−75 −70 −65
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b 
 (
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Figure 6.2. The ‘X’ points are the synthetic noisy measurements. On solving the associated
least squares problem, ATAx = AT b we “recover” G = 1.18 and E = −68.75, which when used in
(6.7), yields the solid straight line.

6.2. Application to a Biaxial Test Problem

We progress from identifying 2 electrical parameters from noisy voltage–current measurements
to identifying 20 fiber stiffness in Figure 3.5 from noisy force–displacement measurements.

We envision loading the 9 nodes with a known force vectors, f ∈ R18, and measuring the
associated 18 displacements, x. From knowledge of x and f we wish to infer the twenty components
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of K = diag(k) where k is the vector of unknown fiber stiffnesses. The first, and most important,
step is to recognize that

ATKAx = f

may be written as
Bk = f where B = ATdiag(Ax). (6.8)

Though conceptually simple this is not of great use in practice, for B is 18-by-20 and hence (6.8)
possesses many solutions. The way out (as in our previous example) is to conduct more experiments.
We will see that, for our small sample, 2 experiments will suffice.

To be precise, we suppose that x(1) is the displacement produced by loading f (1) while x(2) is the
displacement produced by loading f (2). We then piggyback the associated pieces in

B =

(
ATdiag(Ax(1))
ATdiag(Ax(2))

)
and f =

(
f (1)

f (2)

)
.

This B is 36-by-20 and so the system Bk = f is overdetermined and hence ripe for least squares.
We proceed then to assemble B and f . We suppose f (1) and f (2) to correspond to horizontal

and vertical stretching

f (1) = [−1 0 0 0 1 0 −1 0 0 0 1 0 −1 0 0 0 1 0]T

f (2) = [0 1 0 1 0 1 0 0 0 0 0 0 0 −1 0 −1 0 −1]T

respectively. For the purpose of our example we suppose that each kj = 1 except k8 = 5. We
assemble ATKA as in Chapter 3 and solve

ATKAx(j) = f (j)

with the help of the pseudoinverse. In order to impart some ‘reality’ to this problem we taint
each x(j) with 10 percent noise prior to constructing B. Please see the attached M–file for details.
Regarding

BTBk = BTf

we note that Matlab solves this system when presented with k=B\f when B is rectangular. We
have illustrated the results of this procedure in Figure 6.3.
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Figure 6.3. Results of a successful biaxial test.
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We see that even in the presense of noise that the stiff fiber is readily identified.

6.3. Projections

From an algebraic point of view (6.5) is an elegant reformulation of the least squares problem.
Though easy to remember it unfortunately obscures the geometric content, suggested by the word
‘projection,’ of (6.4). As projections arise frequently in many applications we pause here to develop
them more carefully.

With respect to the normal equations we note that if N (A) = {0} then

x = (ATA)−1AT b

and so the orthogonal projection of b onto R(A) is

bR = Ax = A(ATA)−1AT b. (6.9)

Defining

P = A(ATA)−1AT , (6.10)

(6.9) takes the form bR = Pb. Commensurate with our notion of what a ‘projection’ should be we
expect that P map vectors not inR(A) onto R(A) while leaving vectors already in R(A) unscathed.
More succinctly, we expect that PbR = bR, i.e., PPb = Pb. As the latter should hold for all b ∈ Rm

we expect that

P 2 = P. (6.11)

With respect to (6.10) we find that indeed

P 2 = A(ATA)−1ATA(ATA)−1AT = A(ATA)−1AT = P.

We also note that the P in (6.10) is symmetric. We dignify these properties through

Definition 6.2. A matrix P that satisfies P 2 = P is called a projection. A symmetric projection
is called an orthogonal projection.

We have taken some pains to motivate the use of the word ‘projection.’ You may be wondering
however what symmetry has to do with orthogonality. We explain this in terms of the tautology

b = Pb+ (I − P )b.

Now, if P is a projection then so too is (I−P ). Moreover, if P is symmetric then the inner product
of b’s two constituents is

(Pb)T (I − P )b = bTP T (I − P )b = bT (P − P 2)b = bT0b = 0,

i.e., Pb is orthogonal to (I − P )b.
As an example, for the A of (6.6) we find

P = A(ATA)−1AT =



1 0 0
0 1 0
0 0 0


 ,
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as suggested by Figure 6.1. It is very useful to even develop expressions for the projection onto a
line. In this case A is the single column, let us denote it by a, and the associated projection matrix
is the scaled outer product

P = aaT/(aTa). (6.12)

For example,

P =
1

2

(
1 1
1 1

)
(6.13)

is orthogonal projection onto the line through a = (1, 1). We illustrate this in Figure 6.4.
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Figure 6.4. The projection of b = (1, 3) onto the line through a = (1, 1) via the projection
matrix, (6.13).

6.4. The QR Decomposition

While linear independence remains a central concept we shall see that representations are often
more concise and computations are always more robust when the relevant basis vectors are chosen
to be “maximally independent,” i.e., orthogonal. Projections are a natural means for transforming
a basis for a space M to an orthonormal basis for M .

This process, known as the Gram–Schmidt Procedure, takes n basis vectors, xj , for a sub-
space M and returns n orthonormal vectors, qj , in M .

GS1: Set y1 = x1 and q1 = y1/‖y1‖.
GS2: y2 = x2 minus the projection of x2 onto the line spanned by q1. That is

y2 = x2 − q1(q
T
1 q1)

−1qT1 x2 = x2 − q1q
T
1 x2.

Set q2 = y2/‖y2‖ and Q2 = [q1 q2].

GS3: y3 = x3 minus the projection of x3 onto the plane spanned by q1 and q2. That is

y3 = x3 −Q2(Q
T
2Q2)

−1QT
2 x3

= x3 − q1q
T
1 x3 − q2q

T
2 x3.

Set q3 = y3/‖y3‖ and Q3 = [q1 q2 q3].
Continue in this fashion through step
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GSn: yn = xn minus its projection onto the subspace spanned by the columns of Qn−1. That is

yn = xn −Qn−1(Q
T
n−1Qn−1)

−1QT
n−1xn

= xn −
n−1∑

j=1

qjq
T
j xn.

Set qn = yn/‖yn‖ and Q = [q1, q2, . . . , qn].

As the resulting Q ∈ Rm×n has orthonormal columns it follows that QTQ = I. We call such a Q
an orthogonal matrix. It follows that if m = n then QT = Q−1.

To take a simple example, let us orthogonalize the following basis for R3,

x1 = [1 0 0]T , x2 = [1 1 0]T , x3 = [1 1 1]T . (6.14)

GS1: q1 = y1 = x1.

GS2: y2 = x2 − q1q
T
1 x2 = [0 1 0]T , and so q2 = y2.

GS3: y3 = x3 − q1q
T
1 x3 − q2q

T
2 x3 = [0 0 1]T , and so q3 = y3.

We have arrived at the canonical basis

q1 = [1 0 0]T , q2 = [0 1 0]T , q3 = [0 0 1]T . (6.15)

Once the idea is grasped the actual calculations are best left to a machine. Matlab accomplishes
this via the orth command. Its implementation is a bit more sophisticated than a blind run of
steps GS1–n. As a result, there is no guarantee that it will return the same basis. For example,
here is a Matlab diary of orth applied to (6.15),

>> X=[1 1 1;0 1 1;0 0 1];

>> Q=orth(X)

Q =

0.7370 -0.5910 0.3280

0.5910 0.3280 -0.7370

0.3280 0.7370 0.5910

This ambiguity does not bother us, for one orthogonal basis is as good as another. In fact, we can
often get by just knowing that an orthonormal basis exists. For example, lets show that orthogonal
bases permit us to easily “see” the rank of a projection.

Proposition 6.3. If P = P 2 then tr(P ) = rank(P ).

Proof: We suppose that P ∈ Rn×n and denote by r the rank of P . We suppose that {q1, . . . , qr} is
an orthonormal basis for R(P ) and that {qr+1, . . . , qn} is an orthonormal basis for N (P T ).

We set Q = [q1 q2 · · · qn] and proceed to compute the trace of QTPQ. We note that the diagonal
element (QTPQ)j,j = qTj Pqj. If j ≤ r we find Pqj = qj and so (QTPQ)j,j = 1 while if j > r then

qTj P = 0 and hence (QTPQ)j,j = 0. It follows that tr(QTPQ) = r. To connect this to tr(P ) we
invoke the product formula, Eq. (1.14), and find

tr(QTPQ) = tr(QTQP ) = tr(IP ) = tr(P ), (6.16)

where we’ve used the fundamental theorem of linear algebra to ensure that QTQ = I. End of Proof.
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A more concrete use for the Gram–Schmidt Procedure will follow from viewing it as a factor-
ization of X . More precisely, we wish to interpret the procedure as expressing each xj as a linear
combination of the qi for i ≤ j. This is simple for j = 1, namely GS1 states

x1 = (qT1 x1)q1. (6.17)

Unpacking GS2 we next find that

x2 = (qT1 x2)q1 + ‖x2 − (qT1 x2)q1‖q2, (6.18)

is indeed a linear combination of q1 of q2. The awkward norm term can be reduced by simply taking
the inner product of each side of (6.18) with q2. As q

T
i qj = δij this yields

qT2 x2 = ‖x2 − (qT1 x2)q1‖
and so, in fact (6.18) takes the form

x2 = (qT1 x2)q1 + (qT2 x2)q2. (6.19)

We next continue this line of argument and find that

xj = (qT1 xj)q1 + (qT2 xj)q2 + · · ·+ (qTj xj)qj . (6.20)

for each j up to n. That each xj is expressed in terms of qi for i ≤ j manifests itself in a triangular
decomposition. Namely, we recognize that (6.17), (6.19) and (6.20), when collected, take the form

[x1, x2, . . . , xn] = [q1, q2, . . . , qn]




qT1 x1 qT1 x2 · · · · · · qT1 xn
0 qT2 x2 qT2 x3 · · · qT2 xn
0 0 qT3 x3 · · · qT3 xn
...

. . .
. . .

. . .
...

0 · · · 0 0 qTnxn



.

This matrix of qj is simply the Q produced by Gram–Schmidt. The remaining upper triangular
matrix is typically denoted R. As none of its diagonal elements may vanish, it is invertible. We
have now established

Proposition 6.4. If X ∈ Rm×n has linearly independent columns then there exists an orthonor-
mal Q ∈ Rm×n and a nonsingular upper triangular R ∈ Rn×n such that

X = QR. (6.21)

This result offers a potentially dramatic rewrite of the least squares problem, Ax = b. For recall
that if x 6= R(A) we instead must solve the normal equations, ATAx = AT b. Of course we may
solve this via the LU factorization of Chapter 3. If we instead factor A = QR then the normal
equations become RTRx = RTQT b. However, RT inherits its nonsingularity from R and so we may
multiply each side by (RT )−1 and arrive at the reduced normal equations

Rx = QT b. (6.22)

As R is upper triangular, this may be solved by a single sweep of back substitution, without ever
even having to construct ATA. We note that Matlab generates Q and R via its qr function and
that it indeed solves (6.22) when confronted with the least squares problem x=A\b.
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To take a concrete example, with the A and b of (6.6) we find

Q =



1 0
0 1
0 0


 , R =

(
1 1
0 1

)
and QT b =

(
1
1

)

and so (6.22) takes the form
(
1 1
0 1

)(
x1
x2

)
=

(
1
1

)
,

and x2 = 1 and x1 = 0 as expected.

6.5. Orthogonal Polynomials∗

We consider the polynomials

e0(x) = 1, e1(x) = x, . . . , en(x) = xn (6.23)

and note they constitute a basis for their span, the space of polynomials of degree n,

Pn ≡ {a0e0(x) + a1e1(x) + · · ·+ anen(x) : a ∈ Rn+1}.

Given a function, say f , over some interval, say [−1, 1], it is very common to attempt to approximate
f by a member of Pn by solving the least squares problem

min
p∈Pn

∫ 1

−1

(f(x)− p(x))2 dx. (6.24)

As suggested by the last section, it might be considerably simpler if the basis vectors of Pn were
orthogonal in a sense consistent with the criterion in Eq. (6.24). More precisely, we consider the
inner product

〈p, q〉 ≡
∫ 1

−1

p(x)q(x) dx, (6.25)

and use it to orthogonalize the ek of Eq. (6.23).

q0(x) = e0(x) = 1

q1(x) = e1(x)− 〈e1, q0〉q0/〈q0, q0〉 = x

q2(x) = e2(x)− 〈e2, q1〉q1/〈q1, q1〉 − 〈e2, q0〉q0/〈q0, q0〉 = x2 − 1/3

q3(x) = e3(x)− 〈e3, q2〉q2/〈q2, q2〉 − 〈e3, q1〉q1/〈q1, q1〉 − 〈e3, q0〉q0/〈q0, q0〉 = x3 − 3x/5.

(6.26)

These are called the Legendre polynomials . We illustrate the first few nonconstants in Fig-
ure 6.5(A).

91



−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

 

 

q1 = x

q2 = x2 − 1/3

q3 = x3 − 3x/5

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

x

 

 

cos(πx)

45(1/3 − x2)/(2π2)

Figure 6.5. (A) The first three interesting Legendre polynomials. (B) The best quadratic
approximation to cos(πx).

For example, with f(x) = cos(πx) and p ∈ P2 we find that

∫ 1

−1

(cos(πx)− p(x))2 dx =

∫ 1

−1

(cos(πx)− (a0 + a1x+ a2(x
2 − 1/3))2 dx

= 1 + (8/π2)a2 + 2a20 + (2/3)a21 + (8/45)a22

takes its minimum at a0 = a1 = 0 and a2 = −45/(2π2). We illustrate the fit in Figure 6.5(B).
We now develop two other approaches to constructing these polynomials.

Proposition 6.5. Commencing from q−1(x) = 0 and q0(x) = 1 the Legendre polynomials obey
the three term recurrence

qn+1(x) = (x− αn+1)qn(x)− βnqn−1(x) (6.27)

where

αn+1 =
〈e1qn, qn〉
〈qn, qn〉

and βn =
〈qn, qn〉

〈qn−1, qn−1〉

Proof: As the qn are each monic it follows that qn+1 − xqn is of order no more than n and so may
be expressed as a linear combination of q0 through qn. Namely

qn+1(x)− xqn(x) = −αn+1qn − βnqn−1 +
n−2∑

m=0

amqm(x). (6.28)

On taking the inner product of each side of Eq. (6.28) with qn we find

〈e1qn, qn〉 = αn+1〈qn, qn〉.
On taking the inner product of each side of Eq. (6.28) with qn−1 we find

〈e1qn, qn−1〉 = βn〈qn−1, qn−1〉.
On taking the inner product of each side of Eq. (6.28) with qn−2, we find 0 = am−2〈qn−2, qn−2〉
and so am−2 = 0. Now moving through decreasing indicies this argument establishes that am = 0,
m = 0, . . . , n− 2. It follows that Eq. (6.28) reveals Eq. (6.27). End of Proof.
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We note that 〈e1qm, qm〉 = 0 by oddness and so each αn = 0 while

βn =
n2

4n2 − 1

and so

qn+1(x) = xqn(x)−
n2

4n2 − 1
qn−1(x).

There are a number of ways to normalize beyond monic. One standard choice is to ask that each
polynomial obey pn(1) = 1. We note that

qn(1) =
n

2n− 1
qn−1(1)

so if

Pn(x) =
(2n− 1)!!

n!
qn(x) (6.29)

(where !! denotes factorial through the odds) will obey Pn(1) = 1. What happens to the recurrence?

(n+ 1)!

(2n+ 1)!!
Pn+1(x) =

n!

(2n− 1)!!
xPn(x)−

n!n

(2n+ 1)!!
Pn−1(x).

multiply through by (2n+ 1)!!/n! to get

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x). (6.30)

This recurrence relation permits deeper study of the Pn. For example, it will yield an explicit
formula for the generating function

G(x, t) ≡
∞∑

n=0

Pn(x)t
n (6.31)

of the Pn. We begin our calculation of G by noting that

G(1, t) ≡
∞∑

n=0

tn =
1

1− t
(6.32)

and then using (6.30) to write

∞∑

n=1

(nPn(x)− (2n− 1)xPn−1(x) + (n− 1)Pn−2(x))t
n = 0. (6.33)

The basic idea is to translate this expression into a differential equation for G. In what follows we
will use t is a subscript to denote differeniation with respect to t. With this we note that the first
term in (6.33) is actually

∞∑

n=1

nPn(x)t
n = t

∞∑

n=1

nPn(x)t
n−1 = tGt(x, t).

To get our hands on the second term we record

∞∑

n=1

(n− 1)Pn−1(x)t
n = t2

∞∑

n=1

(n− 1)Pn−1(x)t
n−2 = t2Gt(x, t)
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and ∞∑

n=1

Pn−1(x)t
n = t

∞∑

n=1

Pn−1(x)t
n−1 = tG(x, t)

and so deduce

x

∞∑

n=1

(2n− 1)Pn−1(x)t
n = 2x

∞∑

n=1

(n− 1)Pn−1(x)t
n + x

∞∑

n=1

Pn−1(x)t
n

= 2xt2Gt(x, t) + xtG(x, t).

Proceeding similarly, the last term in (6.33) becomes

∞∑

n=1

(n− 1)Pn−2(x)t
n = t3

∞∑

n=1

(n− 2)Pn−2(x)t
n−3 + t2

∞∑

n=1

Pn−2(x)t
n−2

= t3Gt(x, t) + t2G(x, t).

It follows that (6.33) is equivalent to tGt−2xt2Gt−xtG+ t3Gt+ t
2G = 0 or, after collecting terms,

(1− 2xt+ t2)Gt + (t− x)G = 0. (6.34)

To find a nonzero G we separate the knowns from the unknowns in (6.34),

Gt

G
= −1

2

at
a

where a(x, t) = 1− 2xt + t2.

We recognize each side to be a logarithmic derivative, i.e.,

(logG)t = −1

2
(log a)t so, upon integration logG = −(1/2) log a+ c,

for some constant c. On taking the exponential of each side we find G(x, t) = a−1/2(x, t) exp(c). On
setting x = 1 and using (6.32) we find c = 0 and so

G(x, t) =
1√

1− 2xt + t2
. (6.35)

We will see in the exercises that this simple explicit generating function satisfies a beautiful par-
tial differential equation that in turn implies that the Pn themselves satisfy a family of ordinary
differential equations.

We frequently work with a weighted inner product,

〈f, g〉w ≡
∫ 1

−1

f(x)g(x)√
1− x2

dx (6.36)

This places much greater weight at the ends. Under the change of variable x = cosφ this takes the
more reminiscent form

〈f, g〉w ≡
∫ π

0

f(cosφ)g(cosφ) dφ. (6.37)

So we denote by cn the orthogonalization of the standard basis with respect to Eq. (6.37) we find

c0(x) = 1, c1(x) = x, c2(x) = x2 − 1/2, and c3(x) = x3 − 3x/4c4(x) = x4 − x2 + 1/8.
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Regarding recurrence we note (by symmetry) again that αn+1 = 0 while

β1 = 1/2, and βn = 1/4, for n > 1,

and so the cn obey
cn+1(x) = xcn(x)− (1/4)cn−1(x), for n > 1,

Now cn(1) = (1/2)cn−1(1) and so if we define

Tn(x) = 2n−1cn(x)

then we arrive at Chebyshev polynomials of the first kind

T1(x) = 2x, T2(x) = 4x2 − 1, T3(x) = 4x3 − 3x and T4(x) = 8x4 − 8x2 + 1

and they obey the recurrence

21−(n+1)Tn+1(x) = x21−nTn(x)− (1/4)21−(n−1)Tn−1(x), for n > 1,

that is
Tn+1 = 2xTn(x)− Tn−1(x). (6.38)

The slight change, U0(x) = 1 and U1(x) = 2x and the same recurrence brings us to the Chebyshev
polynomials of the second kind.

U2(x) = 4x2 − 1 and U3(x) = 8x3 − 4x.

We compute their generating function

G(x, t) ≡
∞∑

n=0

Un(x)t
n

by unpacking
∞∑

n=1

(Un(x)− 2xUn−1(x) + Un−2(x))t
n = 0

for ∞∑

n=1

Un−1(x)t
n = t

∞∑

n=1

Un−1(x)t
n−1 = tG(x, t)

and ∞∑

n=1

Un−2(x)t
n = t2

∞∑

n=1

Un−2(x)t
n = t2G(x, t)

and so all togther we find G− 1− 2xtG + t2G = 0 or that is

G(x, t) =
1

1− 2xt+ t2
. (6.39)

We will meet these Chebyshev polynomials, and their generating function, when studying trees and
cycles in our closing chapter on graph theory.

6.6. Detecting Integer Relations∗
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The previous section demonstrated the value of QR for resolving overdetermined systems. In
this section we will discuss its use in an underdetermined system that arises in a beautiful algorithm
for detecting integer relations between real numbers. We denote the set of integers by Z and the
lattice of integers in Rn by Zn. Given an x ∈ Rn we call a nonzero z ∈ Zn an integer relation for
x if

zTx = 0. (6.40)

In the plane one can find such relations by merely computing the greatest common divisor of the
scaled entries. For example, to find z ∈ Z2 such that 3.1z1 +0.04z2 = 0 we multiply by 100 to clear
fractions and arrive at 310z1 + 4z2 = 0. We then compute g = gcd(310, 4) = 2 and note that

z1 = 4/g = 2 and z2 = −310/g = −155

provide an integer relation. The gcd is computed via a classic division algorithm that first appeared
in Euclid. Attempts to generalize this to higher dimensions have only recently succeeded – with
the resulting algorithm recognized as one of the ten best of the 20th century, and its application in
the right hands has detected some amazing new patterns - opening for example new vistas on π.
We will use it to uncover the integers in putative functional relations like

z1 sin(5θ) + z2 sin(θ) + z3 sin
3(θ) + z4 sin

5(θ) = 0. (6.41)

The algorithm is known as PSLQ where PS stands for Partial Sums and LQ for the the Lower Tri-
angular Orthogonal Decomposition, a transposed variant of QR. We have found it more convenient
to present the method as PSQR.

First, regarding partial sums, we assume without loss that ‖x‖ = 1 and no xj = 0 (otherwise
there is an obvious integer relation), build

s2j =

n∑

k=j

x2k.

and use these to populate the (n− 1)× n upper triangular matrix

Ux =




s2
s1

−x2x1
s1s2

−x3x1
s1s2

· · · · · · −xnx1
s1s2

s3
s2

−x3x2
s2s3

· · · · · · −xnx2
s2s3

. . .
. . .

...
...

sn−1

sn−2

−xn−1xn−2

sn−1sn−2

−xnxn−2

sn−1sn−2
sn
sn−1

−xnxn−1

snsn−1



. (6.42)

This matrix enjoys two lovely identities

UxU
T
x = In−1 and UT

x Ux = In − xxT (6.43)

on which the entire algorithm depends. To establish the first we first examine the diagonal term

Ux(i, :)Ux(i, :)
T = (si+1/si)

2 +
1

(si+1si)2
+ x2i

n∑

k=i+1

x2k =
s2i+1

s2i
+
x2i
s2i

= 1.

Regarding the off–diagonal terms we suppose, without loss, i < j and find

Ux(i, :)Ux(j, :)
T = −xjxisj+1

sisi+1sj
+

xixj
sisi+1sjsj+1

n∑

k=j+1

x2k = −xjxisj+1

sisi+1sj
+
xixjsj+1

sisi+1sj
= 0.
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This proves the first identity in (6.43). The second may be proven in much the same way and is
left as an exercise. An immediate consequence of the second is that

Px ≡ UT
x Ux (6.44)

is orthogonal projection onto the orthogonal complement to the line through x, and

Pxz = z for any integer relation z ∈ Zn for x. (6.45)

With this preparation we may establish

Proposition 6.6. Suppose that A ∈ Zn×n is invertible and that UxA = QR where Q ∈
R(n−1)×(n−1) is orthogonal, R ∈ R(n−1)×n is upper triangular with no zeros on its diagonal, and
Ux is given in (6.42). If z is an Integer Relation for x then

1 ≤ ‖z‖Rmax (6.46)

where Rmax is the magnitude of the largest diagonal element of R.

Proof: From UxA = QR we deduce PxA = UT
x UxA = UT

x QR. So if z is an Integer Relation for x
then by (6.44) and (6.45) it follows that zT = zTPx and zTA = zTPxA = zT (UT

x Q)R. Now, as A is
invertible zTA 6= 0. Let j be the least j for which zTA:,j 6= 0, so zTA:,k = 0 for k < j. If j = 1 skip
to (6.47). If j > 1 note that, as R is upper triangular,

0 = zTA:,1 = zT (UT
x Q)R:,1 = r1,1z

T (UT
x Q):,1,

and, as r1,1 6= 0 we conclude that zT (UT
x Q):,1 = 0. Continuing in this fashion,

0 = zTA:,2 = zT (UT
x Q)R:,2 = r1,2z

T (UT
x Q):,1 + r2,2z

T (UT
x Q):,2.

In this way we see that zT (UT
x Q):,k = 0 for each k < j and so

zTA:,j = rj,jz
T (UT

x Q):,j. (6.47)

Finally, as the left side of (6.47) is a nonzero integer and each ‖(UT
x Q):,j‖ = 1 we find

1 ≤ |zTA:,j| = |zT (UT
x Q):,jrj,j| ≤ |rj,j|‖z‖‖(UT

x Q):,j‖ = |rj,j|‖z‖ ≤ Rmax‖z‖

as a consequence of the Cauchy–Schwarz inequality. End of Proof.

This result sets the stage for a tractable, constructive means for identifying an integer relation
or for showing that one is improbable, i.e., of astronomically big norm. The idea is to successively
choose the “free” integer matrix A so to decrease Rmax (and so increase the size of any permissible
integer relation) while monitoring the diagonal of R for zeros which then reveal integer relations in
the row(s) of A−1.

The decrease in Rmax is achieved through a simple integer variation on Gaussian Elimination. It
begins, given an upper triangular R ∈ R(n−1)×n, by generating an upper triangular, unit diagonal,
D ∈ Rn×n such that RD is diagonal and diag(R) = diag(RD). We build this elimination matrix
via successive construction of its super–diagonals

di,i = 1, di,i+1 = −ri,i+1/ri,i, di,i+2 = −(ri,i+1di+1,i+2 + ri,i+2di+2,i+2)/ri,i,
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and in general

di,i+j = − 1

ri,i

j∑

k=1

ri,i+kdi+k,i+j. (6.48)

For example, if

R =

(
1 2 3
0 4 5

)
then D =



1 −2 −1/2
0 1 −5/4
0 0 1


 and RD =

(
1 0 0
0 4 0

)
.

As we will use D to transform A we must respect its integrality. This is accomplished by sequentially
rounding to the nearest integer in our super-diagonal construction. That is we replace (6.48) with

di,i+j = round

(
− 1

ri,i

j∑

k=1

ri,i+kdi+k,i+j

)
. (6.49)

On application to the small example above,

D =



1 −2 −1
0 1 −1
0 0 1


 and RD =

(
1 0 0
0 4 1

)
.

Although RD is not necessarily diagonal, we can still prove

|(RD)i,j| ≤ |rj,j|/2. (6.50)

The construction of D from R via (6.49) is known as Hermite Reduction and as such we will
denote it D = Hred(R). We now have all of the pieces required of the

Integer Relation Algorithm

Initialize. Given x ∈ Rn build Ux per (6.42). Set U = Ux and A = In and choose w > 2/
√
3.

While neither x nor diag(U) possess any zero elements

1. Reduce: Compute D = Hred(U) and set

x = D−1x, U = UD and A = AD.

2. Exchange: Let r be such that wj|uj,j| is maximal for j = r. Let Ĩ be the elementary
perturbation of In where columns r and r + 1 are swapped, and set

x = Ĩx, U = UĨ and A = AĨ.

If r = n− 1 then U remains upper triangular and we return to top of while. Else,

3. Fix: Construct F = In−1 except the 2× 2 block
(
fr,r fr,r+1

fr+1,r fr+1,r+1

)
=

1

(u2r,r + u2r+1,r)
1/2

(
ur,r ur+1,r

−ur+1,r ur,r

)
.

Set U = FU and return to top of while.
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end of While

We see from the exchange step that w is a weight that can assist the motion of large diagonal ele-
ments down the diagonal and eventually off the diagonal and into column n. We have implemented
this algorithm in psqr. For example, with x = (1.5, 2.3, 3.2)T and γ = 3 psqr returns

A−1 =



4 −4 1
9 −17 8
1 −2 1




and we recognize two integer relations for x in its first two rows.

6.7. Probabilistic and Statistical Interpretations∗

The previous example offers entry into the fascinating world of probability theory. To say that
our jth experiment was tainted with Gaussian noise (of zero mean and variance σ2) is to say that

ajx = bj + εj (6.51)

where aj is the jth row of A and that εj is drawn from a probability distribution with density

p(ε) ≡ 1

σ
√
2π

exp(−ε2/(2σ2)). (6.52)

This permits us to write the probability of observing bj given aj and the candidate x, as

p(bj |aj; x) =
1

σ
√
2π

exp(−(ajx− bj)
2/(2σ2)).

Next, as we expect the jth and kth experiments to be independent of one another (i.e., errors in
one should not effect errors in the other) we can write the probability of observing bj and bk given
aj and ak and the candidate x, as the product of the individual probabilities

p((bj , bk)|(aj, ak); x) =
1

σ22π
exp(−((ajx− bj)

2 − (akx− bk)
2/(2σ2)).

Combining now all of the experiments, we find

p(b|A; x) = 1

σm(2π)m/2
exp(−‖Ax− b‖2/(2σ2)).

This is often abbreviated as L(x) and interpreted as the likelihood of A producing b given x. The
principle of maximum likelihood is to choose x to maximize this likelihood. This is clearly the
x that minimizes ‖Ax− b‖2.

This rationale generalizes naturally to the case where each experiment produces more than one
measurement. In this case each εj ∈ Rn is drawn from the multivariate density

p(ε) ≡ 1√
(2π)n det(C)

exp(−εTC−1ε/2). (6.53)

where C ∈ Rn×n is the symmetric and positive definite covariance matrix. It follows that the
probability of measuring bj ∈ Rn given aj ∈ Rn×m and x ∈ Rm is

p(bj |aj ; x) =
1√

(2π)n det(C)
exp(−(ajx− bj)

TC−1(ajx− bj)/2).
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We would like to write this as a simple square. The way out is via the Cholesky factorization (recall
(6.54))

C = LLT

Finally, we note that positive definite matrices permit a simpler LU factorization.

Proposition 6.7. Cholesky Factorization If S is symmteric and positive definite then there
exists a lower triangular matrix L, with positive diagonal elements, for which

S = LLT . (6.54)

Proof: From the symmtery of S ∈ Rn×n we may begin with the representation

S =

(
s11 ST21
S21 S22

)
, s11 ∈ R, S21 ∈ Rn−1, S22 ∈ R(n−1)×(n−1).

As S is positive definite we may conclude that s11 > 0 and

S22 −
1

s11
S21S

T
21 is positive definite. (6.55)

To prove the first claim choose x = (1, 0, . . . , 0)T and note that 0 < xTSx = s11. To establish (6.55)
write x = (x1, x̃)

T with x1 ∈ R and confirm that

xTSx = s11x
2
1 + 2x1S

T
21x̃+ x̃TS22x̃. (6.56)

Next, show that you may choose x1 such that

s11x
2
1 + 2x1S

T
21x̃− ST21S21 = 0 (6.57)

and conclude that this choice confirms the claim in (6.55).
With these preliminaries we proceed to construct the factorization

(
s11 ST21
S21 S22

)
=

(
l11 0
L21 L22

)(
l11 LT21
0 LT22

)
=

(
l211 l11L

T
21

l11L21 L21L
T
21 + L22L

T
22

)
.

Identifying terms we find

l11 =
√
s11, L21 = S21/l11 and L22L

T
22 = S22 − S21S

T
21/s11. (6.58)

The first two equalities are explicit and, thanks to s11 > 0, unambiguous. Regarding the third
assignment in (6.58) we note that its right hand side is symmetric by inspection and positive definite
by the argument following (6.57). As such, the third assignment in (6.58) is simply the Cholesky
factorization of the n− 1 dimensional matrix S22 − S21S

T
21/s11. Applying the above scheme to this

will reduce our needs to the Cholesky factorization of an n−2 dimensional matrix. Continuing this
process brings us the trivial one dimensional factorization. End of Proof.

To implement the algorithm at the center of the proof of (6.54) we simply build the columns of
L from longest to shortest. For example, we build the first column




4 8 16
8 52 92
16 92 308


 =



2 0 0
4 l22 0
8 l32 l33





2 4 8
0 l22 l32
0 0 l33



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by dividing the original first column by the square root of its first element. Proceeding on to the
second column we find

(
52 92
92 308

)
−
(
4
8

)(
4 8

)
=

(
l22 0
l32 l33

)(
l22 l32
0 l33

)

that is, (
36 60
60 244

)
=

(
6 0
10 l33

)(
6 10
0 l33

)

and finally l233 = 244− 100 and so l33 = 12. All together,



4 8 16
8 52 92
16 92 308


 =



2 0 0
4 6 0
8 10 12





2 4 8
0 6 10
0 0 12




Picking of the thread, for then (exercise)

p(bj |aj; x) =
1√

(2π)n det(C)
exp(−‖L−1(ajx− bj)‖2/2).

and so using independence, after stacking and blocking

p(b|A; x) = 1

((2π)n det(C))m/2
exp(−‖L−1(Ax− b)‖2/2).

and so the x that maximizes the likelihood is the x that satisfies the weighted least squares problem

ATC−1Ax = ATC−1b.

From the statistical point of view we call ELS ≡ (ATA)−1AT the Least Squares Estimator.
We note that ELSb is clearly linear in b and we show here that if εj is simply assumed to be
independent and drawn from a distribution with mean zero and variance σ2 then ELSb is the Best
Linear Unbiased Estimate.

A linear estimator E is called unbiased if the mean value of Eb is x. But this is easy,

mean(Eb) = mean(EAx− Eε) = EAx+ Emean(ε) = EAx

and so E is unbiased iff EA = I. Please note that ELS is indeed unbiased. It follows that the
variance of the unbiased estimate is simply

var(Eb) ≡ mean((Eb−x)(Eb−x)T ) = mean((E(Ax−ε)−x)(E(Ax−ε)−x)T ) = Evar(ε)ET . (6.59)

From here we can now establish that ELSb is best in the sense that it has the least variance, in the
sense of postivive definite matrices. To begin we write E = ELS +D and note that EA = I implies
DA = 0 and so DET

LS = ELSD = 0. As such, in the single measurement case, i.e., var(ε) = σ2I,
we find

var(Eb) = Evar(ε)ET = σ2EET = σ2(ELS +D)(ELS +D)T = var(ELSb) + σ2DDT .

As DDT is a positive semidefinite we have shown that

yTvar(ELSb)y ≤ yTvar(Eb)y
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for every vector y and every Linear Unbiased Estimator, E.
In the multivariate case where var(ε) = C we again invoke its Cholesky factorization, C = LLT ,

to transform b = Ax+ (or−)ε to

b = Ax+ ε, where b = L−1b, A = L−1A and ε = L−1ε.

This decorrelates the error terms for

var(ε) = var(L−1ε) = L−1CL−T = L−1LLTL−T = I.

And so we may argue as above that

var(Eb) = Evar(b)ET = (ELS +D)(ELS +D)T = var(ELSb) +DDT

where
ELS = (A

T
A)−1A

T
= (ATL−T

n L−1
n A)−1ATL−T

n L−1
n = (ATC−1A)−1ATC−1

as above.

6.8. Autoregressive Models and Levinson’s Algorithm∗

We investigate a classic least squares problem from random signal theory. We suppose that
x ∈ RN is drawn from a zero–mean second order stationary process. That is,

mean(xj) = 0 and mean(xjxj+ℓ) ≡ cℓ = c−ℓ. (6.60)

We envision xj to be an observation at time j and so interpret ℓ as the lag between observations.
Hence each “mean” in (6.60) is to be interpreted as “average over observations.” The stationary
hypothesis states that the covariance between observations at different times depends only on the
associated lag. As these are covariances of the same process it is common to call them autocovari-
ances. .

The intuitive notion of stationary suggests that it may be reasonable to “predict” the value
of xj from a linear combination of its past values. More precisely, we will fit the process to an
autoregressive model of order L,

xj =
L∑

ℓ=1

aℓxj−ℓ (6.61)

where L is typically much less than N . We use (6.60) to arrive at a consistent and deterministic
system for a ∈ RL. Multiplying each side of (6.61) by xj+1 and taking means

mean(xj+1xj) =

L∑

ℓ=1

aℓmean(xj+1xj−ℓ), reveals c1 =

L∑

ℓ=1

aℓcℓ−1, (6.62)

while multiplying (6.61) by xj+k and taking means reveals

ck =
L∑

ℓ=1

aℓcℓ−k. (6.63)

All together we arrive at the system
CLa = c1:L (6.64)
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where c1:L = (c1, c2, . . . , cL)
T and

CL =




c0 c1 · · · cL−2 cL−1

c1
. . .

. . .
. . . cL−2

...
. . .

. . .
. . .

...

cL−2
. . .

. . .
. . . c1

cL−1 cL−2 · · · c1 c0




The system (6.64) is known as the Yule–Walker equations for the autoregressive model, (6.61).
We see that the stationarity condition, (6.60) has manifested itself in the condition that the matrix
CL is constant along each diagonal. Such matrices are called Toeplitz matrices. They occur
frequently in applications and enjoy a considerable theorrtical development (stay tuned).

In order to develop some intuition about the behavior of such models we simulate and analyze
the first order process

xj = a1xj−1 + εj , (6.65)

where εj is drawn from the Gaussian distribution with density (6.52). Squaring and taking means
of each side reveals

c0 = mean(x2j) = mean(a21x
2
j−1 + 2a1xj−1εj + ε2j) = a21c0 + 0 + σ2,

and so,

c0 =
σ2

1− a21
. (6.66)

In a similar fashion,

ck = mean(xjxj+k) = mean(xj(a1xj+k−1 + εj+k)) = a1ck−1 = a21ck−2 = · · · = ak1c0. (6.67)

We illustrate in Figure 6.6 the processes and their autocovariances when a1 = ±0.95 and σ = 1.
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Figure 6.6 Sample paths and exact and empirical autocovariances for the first order model,
(6.65), with σ = 1.

We next address the most parsimonious choice of model order, L. To distinguish the model
orders we denote the solution to (6.61) at order L by a(L) and the associated least squares error by

ρ(L) ≡ 1

N

N∑

j=1

mean



(
xj −

L∑

ℓ=1

a
(L)
ℓ xj−ℓ

)2

 = c0 − cT1:La

(L).

The competing objectives are to render both the error, ρ(L), and the model order, L, small. We
accomplish this by minimizing the Relative Final Prediction Error

RFPE(L) =
N + L+ 1

N − L− 1

ρ(L)

c0
. (6.68)

The search for the minimum is eased by the fact that we may solve for a(L) via a fast and cheap
update of a(L−1). The resulting algorithm was first discovered in this context by Norman Levinson
and can be seen as a recursive inverse Cholesky factorization of CL,

RT
LCLRL = DL, where DL = diag(d1:L) and RL =

(
RL−1 rL−1

0 1

)
(6.69)

that hinges on the persymmetry of CL, i.e.,

ELCLEL = CL

where EL = [eL eL−1 · · · e1] is the exchange matrix obtained by exchanging, or reversing, the
columns of the L-by-L identity matrix. We construct the L = 2 factors by hand

R2 =

(
1 −c1/c0
0 1

)
and D2 =

(
c0 0
0 c0 − c21/c0

)

and proceed to establish the general case.
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Proposition 6.8. Levinson’s Algorithm. Commencing from r1 = −c1/c0, d2 = c0− c21/c0 and
a(1) = c1/c0 and k = 1, we chart the recurrence relations

γk+1 = −(cT1:krk + ck+1)/dk+1

a(k+1) =

(
a(k)

0

)
− γk+1

(
rk
1

)

rk+1 =

(
0
rk

)
+ γk+1

(
1

Ekrk

)

dk+2 = (1− γ2k+1)dk+1.

(6.70)

Proof: To set up the recursion we recall that c1:k = (c1, c2, . . . , ck)
T and express the growth of our

Toeplitz matrix in terms of the associated exchange matrix:

Ck+1 =

(
Ck Ekc1:k

cT1:kEk c0

)
=

(
c0 cT1:k
c1:k Ck

)
(6.71)

and the growth of its associated Cholesky factor via

Rk+1 =

(
Rk rk
0 1

)
, rk+1 =

(
γk+1

sk

)
. (6.72)

To begin, we use the first representation of Ck+1 in (6.71) and equate last columns in Ck+1Rk+1 =
R−T
k+1Dk+1, finding

Ckrk + Ekc1:k = 0 (6.73)

and
cT1:kEkrk + c0 = dk+1. (6.74)

The former becomes, on using persymmetry Ck = EkCkEk and multiplying across by ET
k ,

CkEkrk + c1:k = 0. (6.75)

We next increment k by 1 in (6.73), finding Ck+1rk+1+Ek+1c1:k+1 = 0. We unpack this using (6.71)
(2nd part) and (6.72) and find

γk+1c0 + cT1:ksk + ck+1 = 0 (6.76)

and
γk+1c1:k + Cksk + Ekc1:k = 0. (6.77)

Subtracting (6.73) from (6.77) and using (6.75) we arrive at

sk = rk + γk+1Ekrk. (6.78)

This completes the expression of

rk+1 =

(
0
rk

)
+ γk+1

(
1

Ekrk

)
, (6.79)

which is precisely the third statement in (6.70). Using (6.78) in (6.76) we find

c0γk+1 + cT1:k(rk + Ekrkγk+1) + ck+1 = 0.
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Applying (6.74) here reveals the first formula in (6.70). This formula, together with (6.74) (after
incrementing k) and (6.79) yield

dk+2 = c0 + cT1:k+1Ek+1rk+1 = c0 + cT1:kEkrk + cT1:k+1

(
rk
1

)
γk+1 = (1− γ2k+1)dk+1,

the fourth piece of the stated recursion. Finally,

a(k+1) = Rk+1D
−1
k+1R

T
k+1c1:k+1

=

(
Rk rk
0 1

)(
D−1
k 0
0 1/dk+1

)(
RT
k 0
rTk 1

)
c1:k+1

=

(
Rk rk
0 1

)(
D−1
k RT

k c1:k
(rTk c1:k + ck+1)/dk+1

)

=

(
RkD

−1
k RT

k c1:k − γk+1rk
−γk+1

)
=

(
a(k)

0

)
− γk+1

(
rk
1

)

fills in the last part of the recursion. End of Proof.

We illustrate its performance in identifying a 10th order model in Figure 6.7.
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Figure 6.7 (A) A sample path of a 10th order process. (B) Its empirical autocovariance. (C)
The relative final prediction error. AkaLev.m

6.9. Notes and Exercises

Our work on detecting integer patterns follows the excellent DH Bailey and Moll (2007). For the
autoregressive approach see Brillinger (2001). The model criteria (6.68) is due to Akaike (1969).
Our presentation of Levinson’s Algorithm follows Ammar and Gragg (1987).

1. An elastic cable was stretched to lengths ℓ = 6, 7, and 8 feet under applied forces of f = 1, 2,
and 4 tons. Assuming Hooke’s law ℓ− L = cf , find cable’s compliance, c, and original length,
L, by least squares. In particular

(i) Formulate the question as Ax = b, with numerical values in A and b. What does x signify?

(ii) Solve the normal equations, ATAx = AT b by hand for x.

(iii) Graph the three data points in the (f, ℓ) plane as well as the straight line fit corresponding
to the x found in (ii).

2. With regard to the example of §6.2 note that, due to the the random generation of the noise
that taints the displacements, one gets a different ‘answer’ every time the code is invoked.

106



(i) Write a loop that invokes the code a sufficient number of times (until the averages settle
down) and submit bar plots of the average fiber stiffness and its standard deviation for each
fiber, along with the associated M–file.

(ii) Experiment with various noise levels with the goal of determining the level above which it
becomes difficult to discern the stiff fiber. Carefully explain your findings.

3. Find the matrix that projects R3 onto the line spanned by [1 0 1]T .

4. Find the matrix that projects R3 onto the plane spanned by [1 0 1]T and [1 1 − 1]T .

5. If P is the projection of Rm onto a k–dimensional subspace M , what is the rank of P and what
is R(P )?

6. Show that if P is an othogonal projection onto a subspace of dimension r then ‖P‖F =
√
r.

7. Show that if P is a projection then so too are P T and I − P .

8. Show that the only invertible projection is the identity matrix.

9. (a) Show that if P and Q are projections then

(P −Q)2 + (I − P −Q)2 = I.

(b) Use (a) to show that if P and Q are orthogonal projections then ‖P −Q‖ ≤ 1.

10. Not all projections are symmetric. Please confirm that

(
1 0
1 0

)
and




1 0 0
−1/2 0 0
−1/4 −1/2 1




are projections. Sketch the column space of the first, and depict the oblique projection of
b = (1, 3)T onto this space. How does your sketch differ from Figure 6.4?

11. Show that orthonormal matrices stretch no vector, i.e., if QTQ = I then ‖Qx‖ = ‖x‖ for all x.

12. Use the Gram–Schmidt procedure, by hand (don’t even use a calculator, for they replace
pregnant square roots with chaotic decimals), to compute orthonormal bases for the four
fundamental subspaces of

A =




1 2 5 3
3 1 5 4
2 −1 0 1
1 2 5 3


 . (6.80)

13. Construct, by hand, the QR decomposition of

A =



1 1
2 1
4 1




and explain its relationship to our first exercise.
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14. Show that the generating function, (6.35), of the Legendre polynomials satisfies the partial
differential equation

((1− x2)Gx)x + t(tG)tt = 0, (6.81)

and hence the Pn obey the ordinary differential equation

((1− x2)P ′
n(x))

′ + n(n+ 1)Pn(x) = 0. (6.82)

Hint: (6.81) is an explicit calculation. Its tedium is minimized via the symbolic toolbox in
Matlab. To get from (6.81) to (6.82) use (6.31).

15. Let us confirm that the density in Eq. (6.52) indeed obeys
∫ ∞

−∞
exp(−t2/(2σ2)) dt = σ

√
2π (6.83)

Hint: Justify each step in
(∫

∞

−∞

exp(−t2/(2σ2)) dt

)2

=

∫

∞

−∞

exp(−t21/(2σ
2)) dt1

∫

∞

−∞

exp(−t22/(2σ
2)) dt2 =

∫

∞

−∞

∫

∞

−∞

exp(−(t21 + t22)/(2σ
2)) dt1dt2.

=

∫ 2π

0

∫

∞

0

exp(−r2/(2σ2))r drdθ,

then notice that the final integrand is constant in θ and is proportional to the derivative of a
clean function of r.

16. The nth moment of a function f on R is

µn(f) ≡
∫ ∞

−∞
xnf(x) dx.

Please compute the moments of the Gaussian density. In particular, show that µn(p) = 0 when
n is odd while for even n that

µ2m(p) = (2m− 1)!!σ2m. (6.84)

where (2m− 1)!! = (2m− 1)(2m− 3) · · · (2m− (2m− 1)) denotes factorials through the odds.
Hint: show that

µ2m(p) = −σ2

∫ ∞

−∞
x2m−1p′(x) dx

and then integrate by parts.

17. The (differential) entropy of a function f on R is

S(f) ≡ −
∫ ∞

−∞
f(x) log f(x) dx.

Use the results of the previous exercise to compute the entropy of the gaussian:

S(p) = (1 + log(2π) + log(σ2))/2. (6.85)

18. Find the first three Hermite polynomials by orthonormalizing {1, x, x2} with respect to the
inner product

〈f, g〉w ≡
∫ ∞

−∞
f(x)g(x)w(x) dx where w(x) =

1√
2π

exp(−x2/2).

Hint: Use (6.83) and the fact that w(x) = w(−x).
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19. Expand an arbitrary function, f , in terms of the Hermite polynomials of the previous exercise.
In particular, show that if

f(x) = w(x)
∞∑

n=0

fnHn(x) then fn =

∫ ∞

−∞
f(x)Hn(x) dx.

Establish the Gram-Charlier Expansion: if f has zero mean and unit variance then

f(x) = w(x)(1 + µ3(f)H3(x) + (µ4(f)− 3)H4(x) + · · · ).

20. Establish the second identity in (6.43). Recall that ‖x‖ = 1 and then deduce, with little work,
that Uxx = 0.

21. Confirm that (6.50) is a consequence of the fact that the largest rounding error is 1/2. That
is, |t− round(t)| ≤ 1/2 for every t ∈ R. Here is how to start in one concrete case

(RD)1,2 = r1,1d1,2 + r1,2

= r1,1round(−r1,2/r1,1) + r1,2

= r1,1round(−r1,2/r1,1) + r1,2 + r1,1(−r1,2/r1,1)− r1,1(−r1,2/r1,1)
= r1,1 (round(−r1,2/r1,1)− (−r1,2/r1,1))

.

Finish this argument and then extend it to the rest of the super–diagonals.

22. Complete the integer relation (6.41) by invoking psqr at many random values of θ.

23. Prove (6.55) by following the hints in (6.56)–(6.57).

24. Code Cholesky and contrast with chol.

25. The statistical modeling of §6.8 is precisely that needed to develop the finite Wiener Filter.
Here we suppose we have measurements, yk, of a true signal, xk, contaminated by additive
noise, εk, i.e.,

yk = xk + εk.

We suppose known the two autocovariances, cyy and cxx, and the covariance, cxy, and we seek
the finite filter a for which

x̃k =

k∑

m=k−N
ak−mym

minimizes mean((xk − x̃k)
2). Show that the best a obeys the Yule–Walker equations




cyy(0) cyy(1) · · · cyy(N)

cyy(1)
. . .

. . .
. . .

. . .
. . .

. . . cyy(1)

cyy(N)
. . . cyy(1) cyy(0)







a0
a1
...
aN


 =




cxy(0)
cxy(1)
...

cxy(N)




26. Let us extend the Levinson Algorithm of §6.8 to the multivariate setting, where X is drawn
from an n–valued zero–mean second order stationary process. That is, each Xj ∈ Rn,

mean(Xj) = 0 and Cℓ ≡ mean(XjX
T
j−ℓ) (6.86)
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and so Ck ∈ Rn×n. We fit X to an autoregressive model of order L,

Xj =

L∑

ℓ=1

AℓXj−ℓ (6.87)

where each Aℓ ∈ Rn×n.

(i) By taking products and means of (6.87) when L = 2 derive the associated Yule–Walker
equations (

A
(2)
1 A

(2)
2

)(
C0 C1

CT
1 C0

)
=
(
C1 C2

)

and proceed to construct the explicit block Cholesky factorization
(

I 0
−CT

1 C
−1
0 I

)(
C0 C1

CT
1 C0

)(
I −C−1

0 C1

0 I

)
=

(
C0 0
0 C0 − CT

1 C
−1
0 C1

)
.

(ii) In general, for a model of order k, derive

(A
(k)
1 A

(k)
2 · · · A(k)

k )




C0 C1 · · · Ck−1

CT
1 C0 · · · Ck−2

...
...

...
CT
k−1 CT

k−2 · · · C0


 = (C1 C2 · · · Ck)

and express it as
A(k)Ck = C1→k. (6.88)

(iii) Define the block exchanger

Ek =




0 · · · 0 In
0 · · · In 0
... . .

. ...
In 0 · · · 0




comprised of k copies of In along the antidiagonal and confirm the block persymmetry

EkCk = C̃kEk, (6.89)

where

C̃k ≡




C0 CT
1 · · · CT

k−1

C1 C0 · · · CT
k−2

...
...

...
Ck−1 Ck−2 · · · C0


 .

(iv) It follows from (iii) that we should pursue the simultaneous Cholesky factorizations

RT
k+1Ck+1Rk+1 = Dk+1 and R̃T

k+1C̃k+1R̃k+1 = D̃k+1.

Adopt the conventions

Rk+1 =

(
Rk Rk

0 In

)
, Rk+1 =

(
Γk+1

Sk

)
, Dk+1 =

(
Dk 0
0 Dk+1

)
(6.90)
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and

R̃k+1 =

(
R̃k R̃k

0 In

)
, R̃k+1 =

(
Γ̃k+1

S̃k

)
, D̃k+1 =

(
D̃k 0

0 D̃k+1,

)
(6.91)

and derive, by arguing as in the proof of Prop. 6.8, the recursive scheme

Γk+1 = −D̃−1
k+1(C1→kRk + Ck+1), Γ̃k+1 = −D−1

k+1(C
T
1→kR̃k + CT

k+1)

A(k+1) =
(
A(k) − D̃k+1Γk+1D

−1
k+1R

T
k −D̃k+1Γk+1D

−1
k+1

)

Sk+1 = Rk + EkR̃kΓk+1, S̃k+1 = R̃k + EkRkΓ̃k+1

Dk+2 = Dk+1(In − Γ̃k+1Γk+1), D̃k+2 = D̃k+1(In − Γk+1Γ̃k+1).

(6.92)

Hint: exploit the representations

Ck+1 =

(
Ck EkC1↓k

CT
1→kEk C0

)
=

(
C0 C1→k

CT
1↓k Ck

)
(6.93)

and

C̃k+1 =

(
C̃k EkCT

1↓k
C1→kEk C0

)
=

(
C0 CT

1→k

C1↓k C̃k

)
. (6.94)
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7. Metabolic Networks

Metabolism, the conversion of food into energy, can be seen to function in three stages. In
the first, fats, polysaccharides and proteins are broken down into fatty acids and glycerol, glucose
and other sugars, and amino acids. In the second stage these metabolites are largely converted
into acetyl units of acetyl CoA. In the third stage Acetyl CoA brings acetyl into the Citric Acid
Cycle. With each turn of the cycle an acetyl group is oxidized and the associated flow of electrons
is harnessed to generate ATP, life’s principal currency of energy.

We derive and solve linear programming problems stemming from flux balance subject to ther-
modynamic constraints. We derive the Simplex Method, offer a geometric interpretation, apply
it to the real problem of succinate production and close with an investigation of Elementary Flux
Modes and Extremal Rays.

7.1. Flux Balance and Optimal Yield

In models of metabolism the concentration of individual metabolites is governed by the reactions
in which they participate. Although metabolites undergo significant conversion we assume that the
net flux of each metabolite is zero. In other words, nothing is lost (or gained) in its conversion.
As there are typically many more reactions than metabolites (in E. Coli the ratio is ten to one)
the modeler is typically faced with an underdetermined system of equilibrium equations. As such
there is typically a large class of balanced flux distributions. Scientists and engineers have recently
turned this freedom to their advantage by directing flow down pathways that deliver an optimal (or
at least improved) yield of a desired product.

To illustrate this we consider the network of Figure 7.1 and suppose that we have a steady flow
into metabolite 1 and wish to accumulate as much as possible of metabolite y.

 1  1  1 

 2 

 2 

 2 

 1 
 1 

 1 

 1 
 1 

 1 

 2 
 1 

 1 

m1

m2

m3 y

1

2
3

4

5
6

Figure 7.1. A metabolic network. mstoich(’ex1tab’)

There are many pathways from m1 to y and our task is to discover or design one that produces
the greatest yield. Along the way we must obey flux balance and energy considerations. The former
simply means that flux into an internal metabolite must balance flux out and that each of the fluxes
has an energetically preferred direction.
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More precisely, Figure 7.1 indicates that m1 is supplied with rate one and then

m1 + 2m2 → y at rate v1

m1 → m2 +m3 at rate v2

m1 + 2m3 → y at rate v3

y → 2m3 at rate v4

m3 → m2 at rate v5

2m2 → y at rate v6

(7.1)

To balance the flux of mj we balance its “total out” and “total in” rates. Its “total out” rate is the
sum of the reaction rates in which it appears as a reactant (on the left), while its “total in” rate
is the sum of the reaction rates in which it appears as a product (on the right). By this logic, the
reaction scheme of (7.1) gives rise to this system of flux balances,

v1 + v2 + v3 = 1

(2v1 + 2v6)− (v2 + v5) = 0

(2v3 + v5)− (v2 + 2v4) = 0

(7.2)

Please note that we have balanced the flux of only the first 3 metabolites, for our goal is to in fact
upset the balance of y in our favor. It is now a simple manner to translate (7.2) into the matrix
equation Sv = f where

S =



1 1 1 0 0 0
2 −1 0 0 −1 2
0 −1 2 −2 1 0


 and f =



1
0
0


 (7.3)

and the yield to

y = cTv = v1 + v3 − v4 + v6. (7.4)

While flux balance has been reduced to Sv = f we note that each of our reactions is typically
catalyzed by an enzyme with prescribed reactants and products. To say that we cannot interchange
these is to say that the reaction is not reversible and this in turn implies that each reaction rate has
a sign. For the sake of definiteness we suppose each vj ≥ 0. We may pose our design problem as

max
v∈P

cTv where P ≡ {v ∈ R6 : Sv = f, v ≥ 0}. (7.5)

The maximization of a linear combination of variables subject to both linear and sign constraints
is called a Linear Programming problem.

7.2. Linear Programming

To begin, we solve Sv = f via row reduction. This marks {v1, v2, v3} as pivot variables and
{v4, v5, v6} as free variables and so permits us to write the general solution as

v1 = (1/4)− (1/4)v4 + (1/2)v5 − (3/4)v6

v2 = (1/2)− (1/2)v4 + (1/2)v6

v3 = (1/4) + (3/4)v4 − (1/2)v5 + (1/4)v6.

(7.6)
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The associated yield is

y = v1 + v3 − v4 + v6 = 1/2− (1/2)v4 + (1/2)v6. (7.7)

The easiest way to guarantee that all rates are nonnegative is to set each of the free rates to zero.
This gives us the simple starting solution

v(1) = (1/4 1/2 1/4 0 0 0)T yields y = 1/2. (7.8)

To improve the yield we note (with respect to (7.7)) that increasing v6 is the only good idea (for it
is the only variable with a positive weight). But how far can we go? We note that, with v4 = v5
still zero that v1 ≥ 0 requires v6 ≤ (1/3) (and that positivity of v2 and v3 provide no upper bounds
on v6). Hence we set v6 = 1/3 and v4 = v5 = 0 in Eq. (7.10) and find

v(2) = (0 2/3 1/3 0 0 1/3)T yields y = 2/3. (7.9)

We can interpret the setting of v1 = 0 to imply that {v1, v2, v3} was not the best choice of pivot
variables. Hence, we might be better served by a system that expresses the new pivot variables
{v2, v3, v6} in terms of the new free variables {v1, v4, v5}. On rearranging Eq. (7.10) we find that

v6 = (1/3)− (4/3)v1 − (1/3)v4 + (2/3)v5

v2 = (2/3)− (2/3)v1 − (2/3)v4 + (1/3)v5

v3 = (1/3)− (1/3)v1 + (2/3)v4 − (1/3)v5

(7.10)

is such a system. As its yield is

y = v1 + v3 − v4 + v6 = (2/3)− v1 − (2/3)v4 + (1/3)v5,

we naturally consider increasing v5. Its only bound is v5 ≤ 1 and at this bound (with v1 = v4 = 0),
we find

v(3) = (0 1 0 0 1 1)T yields y = 1. (7.11)

Returning to Figure 7.1, as the supplied flow into m1 was 1 our yield cannot exceed 1, and v(3) is
an optimal pathway. As a check on our calculations we might wish to confirm this algebraically.
More precisely, we express the new basic variables {v2, v5, v6} in terms of the new free variables
{v1, v3, v4}. On rearranging Eq. (7.10) we find

v6 = 1− 2v1 − 2v3 + v4

v2 = 1− v1 − v3

v5 = 1− v1 − 3v3 + 2v4

(7.12)

is such is system. As its yield

y = v1 + v3 − v4 + v6 = 1− v1 − v3,

has no rates with positive weights we conclude that indeed no further growth is possible.

7.3. The Simplex Method

We now attempt to formalize these steps. The step from (7.2) to (7.6) begins by row reduction of
Sv = f and subsequent identification of the basic, or pivot, variables indexed by b, and nonbasic,
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or free, variables indexed by n. This permits us to express Sv = f as Sbvb+Snvn = f , and to solve
for the basic in terms of the nonbasic

vb = S−1
b (f − Snvn) = v∗b − S−1

b Snvn where v∗b = S−1
b f. (7.13)

Here Sb corresponds to those columns of S indexed by b. This permits us to express the yield

y = cTv = cTb vb + cTnvn = cTb S
−1
b f + (cTn − cTb S

−1
b Sn)vn.

To increase the yield we consider

wi = max w where w ≡ cTn − cTb S
−1
b Sn. (7.14)

If wi ≤ 0 then there is no room for growth and we are done. If however wi > 0 then we flex its
associated free variable (with index j = ni) to increase the yield while staying feasible. With t
denoting the value of the entering free variable we stay feasible (recalling Eq. (7.13)) so long as the
new

vb = v∗b − tS−1
b sj ≥ 0, (7.15)

where sj is the jth column of S. As the yield increases with t we should choose t to be the largest
value for which Eq. (7.15) holds. That largest value is

tp = min t where t ≡ v∗b ./(S
−1
b sj) (7.16)

With this choice of t in Eq. (7.15) we note that the pth element of v∗b − tpS
−1
b sj is zero. As such the

index bp moves from the basic to the nonbasic set while index ni moves in the opposite direction
and the values of the basic variables are the associated nonzero values of v∗b − tpS

−1
b sj at the old

indices together with tp at the new index. We have now derived the

Simplex Algorithm

1. Given basic, b, and nonbasic, n, index sets and the basic feasible solution v∗b .

2. Compute wi in Eq. (7.14).

3. If wi ≤ 0 then v∗b produces the maximal yield, cTb v
∗
b , and you may stop. Otherwise set j = ni

and compute tp in Eq. (7.16).

4. Replace bp in b with ni and replace ni in n with bp. The new v∗b is tp at the new index and the
nonzero values of v∗b − tpS

−1
b sj at the old indices. Return to step 2.

The “cost” of each iteration of the Simplex Algorithm is dominated by the computation of
cTS−1

b Sn and S−1
b sj. We can accelerate the first by using the associative property of matrix mul-

tiplication to free us from the costly S−1
b Sn. In particular, setting u = S−T

b c brings the desired
uTSn = cTS−1

b Sn. We have implemented this in simplex.m

7.4. The Geometric Point of View∗

Our approach so far has been algebraic and algorithmic. We complement these here by illustrat-
ing the beautiful fashion in which the Simplex Method moves from vertex to vertex of the admissible
polyhedron,

P ≡ {v ∈ Rn : Sv = b, v ≥ 0}.
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We will do this first for the concrete problem of the first section and then attack the general problem
using the theory of convex sets developed in §5.4.

For the S and b of (7.2) the space of n = 6 rates is beyond our visual comprehension. As S
has only 3 rows however we should be able to reduce our problem to one in three dimensions. We
will do this with the help of S+, the pseudo–inverse of S, and E, a 6-by-3 matrix whose columns
comprise a basis for N (S). When put into action these yields

P ≡ {v = v0 + Eu : u ∈ Pred}

where

Pred = {u ∈ R3 : Eu ≥ −v0}, v0 = S+b =




1/4
1/2
1/4
0
0
0




and E =




−1/4 1/2 −3/4
−1/2 0 1/2
3/4 −1/2 1/4
1 0 0
0 1 0
0 0 1




with associated yield
y = cTv = 1/2 + 1/2(u3 − u1). (7.17)

We write out Eu ≥ −v0
u1 − 2u2 + 3u3 ≤ 1

u1 − u3 ≤ 1

−3u1 + 2u2 − u3 ≤ 1

(7.18)

and note that as the yield, Eq. (7.17), is independent of u2 it suffices to study this system in the
(u1, u3) plane.
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Figure 7.2. Projection of Pred onto the (u1, u3) plane for three values of u2. In each case the
left face is the line u3 = 2u2 − 3u1 − 1, the right face is the (solid) line u3 = u1 − 1 and the top
face is u3 = (1 + 2u2 − u1)/3. The yield, Eq. (7.17), is strictly a function of u3 − u1 and we have
plotted u3 − u1 = 1 as a dotted line in each panel. (A) u2 = 1 and bottom face is the line u3 = 0.
(B) u2 = 2. (C) u2 = 3.
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7.5. Succinate Production∗
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v1 : glu + pep → g6p + pyr

v2 : g6p → 2g3p

v3 : g3p + nadp → pep + nadh

v4 : pep → pyr

v5 : isocit +2nadp → succ +2nadh

v6 : pyr + nadp → aCoA + nadh

v7 : aCoA → ace

v8 : aCoA + 2nadh → eth + 2nadp

v9 : isocit → glyox + succ

v10 : glyox + aCoA → mal

v11 : oaa + nadh → mal + nadp

v12 : mal → fum

v13 : fum + nadh → succ + nadp

v14 : aCoA + oaa → isocit

v15 : pyr → form + aCoA

v16 : form + nadp → cdh + nadh

v17 : glu → g6p

v18 : pyr → oaa

v19 : pep → oaa

Figure 7.3 A set of 19 reactions among 16 metabolites from central metabolism and its associated
network. Abbreviations: glucose,
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S =

























































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
−1 0 0 −1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 −1 1 1 0 1 0 0 0 1 −1 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 −1 −1
0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 −2 −1 0 2 0 0 1 0 1 0 0 −1 0 0 0

























































(7.19)

where the supply is
fT = (1 zeros(15, 1))

and the yield is

y = v5 + v9 + v13 = cTv where cT = (0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0).

Our design problem is then

max cTv subject to Sv = f, 0 ≤ v ∈ Rr . (7.20)

Proceeding as above, our S is 16-by-19 with a three-dimensional nullspace and even identifying
a starting point is problematic. We look for a systematic approach. Perhaps the simplest is to
augment S and v to

S̃ ≡ [S Im] and ṽT ≡ (ṽ1, ṽ2, . . . , ṽr, ṽr+1, ṽr+2, . . . , ṽr+m)

and to consider the auxiliary problem

max pT ṽ subject to S̃ṽ = f, 0 ≤ ṽ ∈ Rr+m (7.21)

where p is chosen to penalize the augmented variables,

pT = (zeros(r, 1), −ones(m, 1)).

It follows that if the maximum value of the auxiliary problem is zero then each of the augmented
variables must vanish and so we have a starting point for the real problem. Regarding a starting
point for Problem (7.21) we have given ourselves so much elbow room that we simply choose our
basic variables to be the auxiliary variables, i.e.,

b̂ = (r + 1, . . . , r +m) and ṽ∗ = (zeros(r, 1); f). (7.22)

Lets first test this approach on the small example. Our basic indices begin at (7, 8, 9) and yield
−1. The algorithm then exchanges 8 for 1 then 9 for 3 to bring (7, 1, 3), all without increasing
the yield. From here it enters the never ending cycle (7, 1, 3) → (7, 2, 3) → (7, 1, 3). This is a well
documented pathology for which there exist a number of remedies. Perhaps the simplest is just to
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nudge f a bit. To be precise we replace f with f̃ where f̃j = fj + 10−6j . With this perturbation
our scheme again moves from (7, 8, 9) to (7, 1, 3) but then to (2, 1, 3) and a yield of 0 and a starting
vector precisely as v(1) in Eq. (7.8).

When applying this augmented and perturbed approach to the large problem we encounter yet
another obstacle/nuance. We drive the yield to 0 but the basic indices include augmented variables!
In particular

b̂ = (2, 4, 3, 1, 6, 18, 5, 13, 12, 14, 10, 31, 32, 33, 11, 8)

The offenders being 31, 32 and 33. One solution is to replace them with proper columns of S, that
is columns with indices in n = n̂ ∩ {1 : r}. Via,
Replacement

1. for each k such that r + k ∈ b̂

2. solve ŜT
b̂
r = ek where ek is the kth column of Im.

3. find a j ∈ n such that sTj r 6= 0.

4. Exchange r + k for j in b̂.

At the optimal design

v = (7, 7, 14, 7, 0, 4, 0, 0, 2, 2, 8, 10, 10, 2, 0, 0, 0, 10, 0)T/7

we achieve a succinate yield of 12/7 and we produce no acetate, CO2 and ethanol, in fact we do
not direct any pyruvate to formate (the precursor of CO2), and we do not split resources at the
redundant pathways from glucose to g6p, from pep to oaa and from isocitrate to succinate.

7.6. Elementary Flux Modes and Extremal Rays∗

We have so far specified specific source and sink metabolites. We now embark on the more difficult
problem of achieving a minimal description of the balance of interior metabolites. Metabolically we
seek all minimal sets of enzymes consistent with flux balance and thermodynamics. More precisely,
given the stoichiometric matrix S (restricted to m internal metabolites participating in d reactions)
we denote by

C(S) ≡ {v ∈ Rd : Sv = 0, v ≥ 0} (7.23)

the set of all possible flux modes. A flux mode v is said to be elementary if there is no other flux
mode that uses a proper subset of the reactions of v. In symbols, define

z(v) = {i : vi = 0}. (7.24)

Then v ∈ C(S) is an elementary flux mode if there does not exist a u ∈ C(S) for which
z(u) ⊂ z(v).

Let’s consider a concrete example. With respect to our first net, see Figure 7.1, the first metabo-
lite, m1, is sourced and the balance only m2 and m3 is governed by the stoichiometric matrix

S =

(
2 −1 0 0 −1 2
0 −1 2 −2 1 0

)
. (7.25)
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The associated set of flux modes, C(S), is then the intersection of the positive orthant in R6 with
the 4–dimensional subspace, N (S). For most, this is not an easy set to visualize. We will see that
its elementary flux modes give us metabolically significant concrete basis vectors with which we
may represent the entire set of flux modes. It turns out that the S of Eq. (7.25) has the seven
elementary flux modes, arranged as the columns of

R =




0 1 0 1 1 0 0
0 2 2 0 1 0 1
1 1 1 0 0 0 0
1 0 0 1 0 1 0
0 0 0 2 1 2 1
0 0 1 0 0 1 1



. (7.26)

Each column is indeed a flux mode, i.e., a nonnegative member of N (S). It is instructive to check
that each is also elementary. Taking the first column we note that it uses only reactions 3 and 4.
To see that it is elementary we must check that no flux mode could operate on only one of these
reactions. This is clear both from the second row of S as well as from Figure 7.1 – for reaction 3 or
4 alone would leave m3 unbalanced.

To enumerate the elementary flux modes, as in Eq. (7.26), as well as to prove that they indeed
constitute a kind of “basis” we translate our problem into one of enumerating the extremal rays in
a pointed polyhedral cone.

To begin, from the m× d stoichiometric matrix S we build the (d+ 2m)× d matrix

A =



Id
S
−S


 (7.27)

and note that
C(A) ≡ {v ∈ Rd : Av ≥ 0} (7.28)

is precisely the set C(S) of flux modes in Eq. (7.23). There is a rich geometric language (and theory)
associated to such objects. We call the members of C(A) rays because if v ∈ C(A) then so is av for
every a ≥ 0. If K is a set of row indices and AK denotes the associated rows of A then

FK ≡ {v ∈ C(A) : AKv = 0} (7.29)

is called a face of C(A). The dimension of a face is its number of linearly independent rays. A face
of dimension 1 is called an extreme ray of C(A). Two extreme rays of C(A) are said to be adjacent
if they span a two-dimensional face of C(A). Before considering the large stoichiometrically relevant
A lets pause to illustrate these definitions on the two small examples

A =

(
1 0
0 1

)
and A′ =




1 −1 0
−8 0 5
−1 5 0
−1 0 5


 (7.30)

Their associated cones, C(A) and C(A′), lie in R2 and R3 respectively and so may be depicted as in
Figure 7.4. The first cone is specially simple. It is a two dimensional face and

F2 =

(
1
0

)
= r1 and F1 =

(
0
1

)
= r2
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are two adjacent extremal rays and every vector in C(A) is a positive linear combination of r1
and r2. The second example is considerably richer. Each row inequality A′

iv ≥ 0 divides R3 into
two half-spaces and the intersection of these half–spaces comprise C(A′). The boundaries of these
half–spaces are planes and these 4 planes intersect at the extremal rays, marked r1 through r4 in
Figure 7.4. For example, A′

2 generates the top face and A′
3 generates the left face and so r3 is the

extremal ray F{2,3}. The full set of extremal rays appear in the columns of

R′ =




1 1 1 1
1 1 0.2 0.2
0.5 1.6 1.6 0.5


 (7.31)

and we observe, at least graphically, that any vector in C(A) is a positive linear combination of
columns of R.

Figure 7.4. The cones (shaded regions) C(A) and C(A′) for the two matrices specified in Eq. (7.30).

The fact that A′ and R′ independently fully determine the same cone has lead to the name
double description for the pair (A,R). In what follows we describe a procedure for building R
from A for A of the form Eq. (7.27).

For any vector v ∈ C(A) we define the zero set with respect to A as the indices of the rows of A
that are orthogonal to v. That is

ζ(v) = {i : Aiv = 0}. (7.32)

This notation allows us to prove

Proposition 7.1. Fζ(r) is the smallest face in C(A) containing r.

Proof: As Aζ(r)r = 0 we see that Fζ(r) is a face containing r. If FK is a face containing r then
AKr = 0 and so K ⊂ ζ(r) and so Fζ(r) ⊂ FK . End of Proof.
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Proposition 7.2. If r is a ray of C(A) and rank(Aζ(r)) = d− k then
(a) rank(Aζ(r)∪{i}) = d− k + 1 for each i 6∈ ζ(r).
(b) dim(Fζ(r)) = k.
(c) If k ≥ 2 then r is a nonnegative combination of two distinct rays r1 and r2 with rank(Aζ(ri)) >
d− k for i = 1, 2.

Proof: (a) We must show that Ai 6∈ span(Aζ(r)). But this follows from Air 6= 0 and Aζ(r)r = 0.
(b) As dim(N (Aζ(r))) = k it contains k linearly independent vectors, say r, v2, v3, . . . vk. We now

turn these into rays. Set r1 ≡ r, ri ≡ r + aivi, i = 2, . . . k. These vectors are linearly independent
so long as each ai 6= 0. If vi ∈ C(A) set ai = 1. Otherwise choose ai to guarantee Ajr + aiAjvi ≥ 0
for each j. Note that

0 < ai ≤ min
j
{−Ajr/Ajvi : Ajvi < 0}

suffices. The k vectors ri, i = 1, . . . , k are linearly independent rays in Fζ(r).
(c) If k ≥ 2 then there exist i and j such that rank(Aζ(r)∪{i,j}) = rank(Aζ(r)) + 2. Hence

Aj 6∈ span(Aζ(r)∪{i}) it follows from the Fundamental Theorem of Linear Algebra that Aj is not
orthogonal to N (Aζ(r)∪{i}) and so there exists u1 ∈ N (Aζ(r)∪{i}) such that Aju1 6= 0. Without loss
we can assume that Aju1 > 0. By construction we also note that Aiu1 = 0. By the same reasoning
there exists a u2 ∈ N (Aζ(r)∪{j}) such that Aiu2 < 0 and Aju2 = 0.

Now v ≡ u1 + u2 satisfies Aiv < 0 and Ajv > 0. Let r1 ≡ r + a1v and r2 ≡ r − a2v with

a1 = min
m

{−Amr/Amv : Amv < 0} and a2 = min
n

{Anr/Anv : Anv > 0}. (7.33)

By construction these are both strictly positive and the resulting r1 and r2 both lie in Fζ(r) and
clearly

r =
a2

a1 + a2
r1 +

a1
a1 + a2

r2

is a positive combination of two rays. Finally, we denote by the m1 and n2 the idiocies at which
the respective minima are attained in Eq. (7.33). As Am1r1 = An2r2 = 0 it follows ζ(r) is strictly
contained in ζ(r1) and ζ(r2) and so N (Aζ(r1)) and N (Aζ(r2)) both have dimensions strictly larger
than k. End of Proof.

Proposition 7.3. Suppose that r is a ray of C(A).
(a) If r is a nonnegative combination of rays of C(A), say

r =
∑

j

λjrj , λj > 0 (7.34)

then each rj ∈ N (Aζ(r)).
(b) r is extreme iff rank(Aζ(r)) = d− 1.
(c) r is a nonnegative combination of extreme rays of C(A).

Proof: (a), We have already noted that r ∈ N (Aζ(r)) hence applying Aζ(r) to each side of Eq. (7.34)
brings

0 =
∑

j

λjAζ(r)rj.

but as each term in the sum is nonnegative it follows that each term is in fact zero.
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(b), If rank(Aζ(r)) = d − 1 , then N (Aζ(r)) = {ar : a ∈ R} and so Fζ(r) is a one–dimensional
face spanned by r. That is, r is extreme. To prove the converse we prove its contrapositive. If
rank(Aζ(r)) < d− 1 then by Prop. 7.2(b) then dim(Fζ(r)) > 1 and so r is not extremal.

(c), If r is not extreme then dim(N (Aζ(r))) = k > 1 and so, by Prop. 7.2(c), r = a1r1 + a2r2
where r1 and r2 obey dim(N (Aζ(ri))) < dimN ((Aζ(r))). If k = 2 we are done. If not apply this
same reasoning to r1 and r2 (and their descendants) until one–dimensional null spaces are achieved.
End of Proof.

Since every extreme ray is certainly necessary to generate C(A) we have the following

Corollary 7.4. Let R be a minimal generating matrix of C(A). Then R is the set of extreme
rays of C(A).

Our final step is to establish a rank test for adjacency.

Proposition 7.5. Let r1 and r2 be distinct extremal rays of C(A). They are adjacent iff
rank(Aζ(r1)∩ζ(r2)) = d− 2.

Proof: Let r1 and r2 be distinct rays of C(A). Then Fζ(r1)∩ζ(r2) is the minimal face of C(A) containing
r1 and r2. To prove the equivalence of (a) and (b) let r1 and r2 be extreme rays of C(A). Since
C(A) is pointed, we have ζ(r1) 6= ζ(r2).

We prove that (a) implies (b). If r1 and r2 are adjacent then they span a two–dimensional
face. As Fζ(r1)∩ζ(r2) is the smallest such face it follows that dim(N (Aζ(r1)∩ζ(r2))) ≤ 2. But, as
N (Aζ(r1)∩ζ(r2)) contains the two distinct one dimensional spaces, N (Aζ(r1)) and N (Aζ(r2)), it follows
that dim(N (Aζ(r1)∩ζ(r2))) ≥ 2.

We prove that (b) implies (a). If dim(N (Aζ(r1)∩ζ(r2))) = 2 then r1 and r2 generate Fζ(r1)∩ζ(r2),
that is, each such x can be written x = a1r1 + a2r2. To secure the signs of a1 and a2 note that if
i ∈ ζ(r2) \ ζ(r1) then

Aix = a1Air1 + a2Air2 = a1Air1.

From the positivity of Aix and Air1 comes the positivity of a1. To show that a2 > 0 repeat this
argument with j ∈ ζ(r1) \ ζ(r2). As r1 and r2 span a two–dimensional face they are adjacent. End
of Proof.

Proposition 7.6. Let (AK , R) be a DD pair such that rank(AK) = d and R is minimal. Select
a row index, i, of A not in K. The new inequality Aiv ≥ 0 partitions the columns of R via

R+ = {rj : Airj > 0}, R0 = {rj : Airj = 0} and R− = {rj : Airj < 0}.

Retain the vectors in the first two sets for the updated

R̃ = [R+ R0]

and whenever r+ ∈ R+ and r− ∈ R− are adjacent append

r̃ = (Air
+)r− − (Air

−)r+ (7.35)

to R̃. Then (AK∪{i}, R̃) is a DD pair and R̃ is minimal.
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Proof: We know from Prop. 7.3 that each extreme ray of C(AK) must belong to R, and that only
the extreme rays of C(AK∪{i}) are necessary in R̃. For r± ∈ R± set W ≡ ζ(r+) ∩ ζ(r−) ∩K and
define r̃ as in Eq. (7.35). Note that ζ(r̃) ∩ (K ∪ {i}) = W ∪ {i}. If r± are adjacent extreme rays of
C(AK), then rank(AW ) = d − 2. Then, by Prop. 7.2(a), rank(Aζ(r̃)∩(K∪{i})) = d − 1. Thus r̃ is an

extreme ray of C(AK∪{i}) and must belong to R̃.
Suppose r± are not adjacent extreme rays. If rank(AW ) < d−2 we get rank(Aζ(r̃)∩(K∪{i})) < d−1

and so r̃ is not an extremal ray in C(AK∪{i}). If rather rank(AW ) = d − 2, then we know from
Prop. 7.6 that r± cannot be both extreme rays of C(AK). But they belong to a two dimensional
face containing exactly two extreme rays of C(AK) which thus belong to R: This adjacent pair will
then produce a new ray equal to r̃, so r̃ is not necessary. Hence all new rays are extreme rays of
C(AK∪{i}) and R̃ is minimal. End of Proof.

I have coded this procedure in efm.m. When run on the S of Eq. (7.25) we get the R of Eq. (7.26)
When run on the S of Eq. (7.19) without rows 1 (glu), 14(CO2), 15(ace) and 16(eth) we get
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Figure 7.5 Elementary Flux Modes for ...

7.7. Notes and Exercises

For a general introduction to Metabolic Engineering see GN Stephanopoulos and Nielsen (1998).
For Linear Programming we have followed Chvatal (1983). Our presentation of the Double Desrip-
tion method for capturing Extremal Rays follows Fukuda and Prodon (1996).

1. Solve max v1 subject to v1 + v2 = 1, v1 ≥ 0 and v2 ≥ 0 by graphing the constraints and seeing
the largest v1.

2. This leaves us then to solve the two linear systems

Sbz = sj and STb u = c.
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We naturally use the lu factorization Sb = LU to conclude that

z = U\(L\sj) and u = LT \(UT\c).
3. Anaerobic Succinate network.

4. We consider the cycling reported in the last section for

Ŝ =



1 1 1 0 0 0 1 0 0
2 −1 0 0 −1 2 0 1 0
0 −1 2 −2 1 0 0 0 1


 and f =



1
0
0


 (7.36)

and cT = (0, 0, 0, 0, 0, 0,−1,−1,−1)T and

b̂ = (7, 8, 9) and v̂∗
b̂
= f and Ŝb̂ = I3.

(a) Execute one iteration of the Simplex Algorithm by hand. In particular, show that Eq. (7.14)
brings

w = (3,−1, 3,−2, 0, 2, 1, 1, 1).

and argue why column 1 will now become basic. To find the departing column show that
Eq. (7.15) asks for the least nonnegative t for which



1
0
0


− t



1
2
0


 ≥ 0, (7.37)

and so conclude that t = 0 is the desired value. As this is forced by the second element in

Eq. (7.37) conclude that the second index of b̂ must leave and conclude that b̂ = (7, 1, 9). Argue
that as t = 0 this step will not increase the yield.

(b) Now reflect on our remedy. In particular, note that if the column on the left in Eq. (7.37)
was actually (1 + ε; ε2; ε3) for some small ε then the least nonnegative t would be ε2/2 and
that the yield increase accordingly.

5. Lets establish the validity of each of the Replacement Algorithm.

(a) If S is full rank then there exists a nonbasic column of S which is not orthogonal to r.

(b) Show that after each replacement that Ŝb̂ remains invertible. Hint: Let S1 and S2 denote

Ŝb̂ before and after replacement of ek with sj . Prove that S2 = S1E where E is the identity
matrix except for its kth column is S−1

1 sj. As S1 is invertible prove that S2 is invertible if E
is invertible. Argue that E is invertible if the kth element of S−1

1 sj is nonzero. Finally argue
that this element is precisely sTj r, which was shown in (a) above to be nonzero.

6. This device of augmentation also applies nicely to the larger class of problems with linear
inequalities. For example, the inequality v1 + v2 ≤ f1 can be handled by introducing a new
variable, v3, and requiring that both v1 + v2 + v3 = f1 and v3 ≥ 0.

(a) Use this idea to transform max v1 subject to v1 + v2 ≤ 1, v1 − v2 ≤ 0, v1 ≥ 0 and v2 ≥ 0
into an equality constrained problem. Note that Eq. (7.22) is indeed a basic feasible solution.
Proceed to solve it by hand by the simplex method. Confirm your answer by graphically
solving the original problem.

(b) Adapt TwoPhaseSimplex.m to solve the mixed problem

max cTv, subject to Sv = b, Av ≤ d, v ≥ 0.
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8. Dynamical Systems

We shift our focus here from linear systems of algebraic equations to linear systems of differential
equations in the quest to understand the dynamics of electrical, mechanical and metabolic networks.
Although the dynamical phenomena that we will be able to explain are indeed substantially richer
than the equilibria that occupied our earlier study we will see, miraculously, that the requisite
mathematical techniques remain essentially algebraic in nature.

Our first, and easiest, task will be to show, with regard to building models, that the methodology
of the Strang Quartet extends naturally to linear dynamical systems. Next, we will argue that the
Laplace Transform takes the differential equation x′(t) = Bx(t), where B ∈ Rn×n, into an algebraic
equation whose easy solution may pass through the Inverse Laplace Transform, and back to x(t),
once one has mastered the eigenvalue problem, Bv = λv. In this chapter we motivate, via many
varied examples, rather than master, the eigenvalue problem. These examples provide a physical
appreciation for the importance of eigenvalues to dynamics – largely through their role in the
matrix exponential, exp(Bt). This appreciation, it is hoped, will whet the appetite for mastery
of the eigenproblem and sustain the reader through two supporting chapters on the calculus of
functions of a complex variable.

In addition to our analytical approach through the Laplace Transform and eigenvalue problem
we also pursue approximate, or numerical, means to solving x′(t) = Bx(t). On discretizing time
this equation becomes immediately algebraic and so very simple, in light of our last 7 chapters, to
code and analyze. We carry this out for electrical and mechanical networks and show that this
method extends naturally to the nonlinear systems, x′(t) = F (x(t)), that appear in modeling the
dynamics of metabolic networks.

8.1. Dynamics of Electrical Networks

In Chapter 2 we modeled and obtained the neuron’s response to a steady (constant) stimulus.
In reality, neurons receive and integrate an ongoing barage of transient stimuli. These time varying
stimuli engage time sensitive properties of the cell membrane. In particular, beginning with the
single compartment model in Figure 8.1, as the cell membrane separates charge it produces a
capacitative current

y2(t) = Cm
dx(t)

dt
(8.1)

whenever the charge moves. Here x(t) is the transmembrane potential at time t and Cm = ASc is
the whole cell capacitance, where AS is the surface area of the cell membrane, in cm2, and c is the
native capacitance of the cell membrane, typically 1 µF/cm2 (micro Farad per square centimeter).
Balancing currents in the single compartment neuron of Figure 8.1 brings the differential equation

Cmx
′(t) + x(t)/Rm = i0(t) (8.2)

in response to the transient current stimulus, i0(t).
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Figure 8.1. (A) A single compartment neuron. (B) In the clean case where Rm = 1 kΩ and
Cm = 1µF and (B) The stimulus i0(t) = t exp(−t) µA and response x(t) = (t2/2) exp(−t) mV in
the case where x(0) = 0 and Rm = 1 kΩ and Cm = 1µF .

The easiest differential equations to solve are the ones that are pure derivatives. The key step is
to see in (8.2) the product rule for differentiation in the guise

(x(t) exp(t))′ = (x′(t) + x(t)) exp(t).

For, in the clean setting where Rm = Cm = 1 and i0(t) = t exp(−t), this permits us to express (8.2)
as

(x(t) exp(t))′ = t.

As the left is a pure derivative we may integrate both sides and find

x(t) exp(t)− x(0) = t2/2, i.e., x(t) = exp(−t)x(0) + exp(−t)t2/2.

We have plotted this in Figure 8.1(B). We have made a clean choice of resistance and capacitance
values. In general, (8.2) looks like

x′(t) + x(t)/τ = f(t), where τ = RmCm and f(t) = i0(t)/Cm. (8.3)

where τ = RmCm and f(t) = i0(t)/Cm. On multiplying both sides of (8.3) by exp(t/τ) it takes the
form

(x(t) exp(t/τ))′ = exp(t/τ)f(t).

On integrating each side from t = 0 to t = T the Fundamental Theorem of Calculus yields

x(T ) exp(T/τ)− x(0) =

∫ T

0

exp(t/τ)f(t) dt,

which after moving x(0) the other side, and multiplying through by exp(−T/τ) brings the final,
explicit representation

x(T ) = exp(−T/τ)x(0) +
∫ T

0

exp((t− T )/τ)f(t) dt. (8.4)

You might wish to evaluate this expression for a variety of stimuli, e.g., step functions and sinusoids.
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We now move on to the multicompartment circuit (neuron) and show that the strategy of the
Strang Quartet from Chapter 2 offers a principaled path to larger models and that the explicit
solution, (8.4), to the scalar problem has a natural generalization in terms of the matrix exponen-
tial. In order that the details not obscure the ideas we proceed gently and consider first the two
compartment model of Figure 8.2.
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Figure 8.2. (A) A two compartment RC model of a neuron. (B) Its response, when Ri = Rm =
Cm = 1, to i0(t) = t exp(−t), as established in (8.23).

With N compartments each compartment has length ℓ/N and radius a and so capacitance Cm =
2πa(ℓ/N)c. We ask now how the static Strang Quartet of Chapter 2 should be augmented. Re-
garding (S1’) we proceed as before. The voltage drops are

e1 = x1, e2 = x1, e3 = x1 − x2, e4 = x2, e5 = x2,

and so

e = −Ax where A =




−1 0
−1 0
−1 1
0 −1
0 −1



.

In (S2) we must now augment Ohm’s law with voltage–current law obeyed by a capacitor, namely
(8.1). This yields,

y1 = Cme
′
1, y2 = e2/Rm, y3 = e3/Ri, y4 = Cme

′
4, y5 = e5/Rm

or, in matrix terms,
y = Ge + Ce′

where G = diag(0 1/Rm 1/Ri 0 1/Rm) and C = diag(Cm 0 0 Cm 0) are the conductance and
capacitance matrices.

As Kirchhoff’s Current law is insensitive to the type of device occupying an edge, step (S3)
proceeds exactly as above. That is,

i0 − y1 − y2 − y3 = 0 and y3 − y4 − y5 = 0,

or, in matrix terms,
ATy = −f where f = [i0 0]T .
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Step (S4) remains one of assembling, hence

ATy = −f ⇒ AT (Ge+ Ce′) = −f ⇒ AT (G(−Ax) + C(−Ax′)) = −f,

becomes

ATCAx′(t) + ATGAx(t) = f(t). (8.5)

where

ATCA =

(
Cm 0
0 Cm

)
and ATGA =

(
1/Ri + 1/Rm −1/Ri

−1/Ri 1/Ri + 1/Rm

)
. (8.6)

Contrasting the two-compartment model, (8.5), with the one-compartment model, (8.2), we note
that the former can be written

x′(t) = Bx(t) + f(t) where B = −ATGA/Cm and f(t) = (i0(t)/Cm 0)T . (8.7)

Our goal, over this and the next 4 chapters, is to understand the sense in which the solution of the
scalar problem generalizes to

x(T ) = exp(BT )x(0) +

∫ T

0

exp(B(T − t))f(t) dt. (8.8)

More precisely, we will be looking for effective ways to compute and understand the matrix ex-
ponential

exp(Bt) ≡
∞∑

k=0

(Bt)k

k!
. (8.9)

There are two classes of matrices, nilpotents and projections, for which this sum may be evaluated
by inspection. See Exer. 8.2 for details. The Spectral Theorem of Chapter 11 will state that every
matrix can be written as a weighted sum of projections and nilpotents, where the weights are
eigenvalues of B.

8.2. Analytical Methods

In attempting to understand the purported solution, (8.8)–(8.9), to the matrix problem our first
idea is to hew close to the scalar case. There we simply multiplied by the right scaler exponential and
integrated. In the matrix case, unsure of the “right” scaler exponential we begin with a “variable”
scaler, −s. In particular, multiplying each side of (8.7) by exp(−st) brings

x′(t) exp(−st) = Bx(t) exp(−st) + g(t) exp(−st). (8.10)

The next step in our complete solution of the scalar problem was one of integration. We start on
the left in (8.10) and note that

∫ T

0

x′(t) exp(−st) dt = x(t) exp(−st)
∣∣∣∣
t=T

t=0

+ s

∫ T

0

x(t) exp(−st) dt, (8.11)

upon integrating by parts. This has left us with “mixed” terms in the sense that the desired x
appears both alone and under the integral sign. We can purify this mix by letting T → ∞ in (8.11).
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More precisely, under the physically plausible assumption that x(t) exp(−st) → 0 as t → ∞ we
deduce from (8.11) that

∫ ∞

0

x′(t) exp(−st) dt = −x(0) + s

∫ ∞

0

x(t) exp(−st) dt. (8.12)

It follows that if we integrate both sides of (8.10) over all time then

s

∫ ∞

0

x(t) exp(−st) dt− x(0) = B

∫ ∞

0

x(t) exp(−st) dt+
∫ ∞

0

g(t) exp(−st) dt. (8.13)

The integral transforms of the known g and unknown x are called the Laplace Transforms of g
and x and are written

G(s) ≡
∫ ∞

0

g(t) exp(−st) dt and X(s) ≡
∫ ∞

0

x(t) exp(−st) dt (8.14)

to stress their dependence on the variable s. With this definition we see that (8.13) becomes
sX(s)− x(0) = BX(s) +G(s), or after simple rearrangement

(sI − B)X(s) = x(0) +G(s). (8.15)

From this we see that if s is such that (sI − B) is invertible then

X(s) = (sI − B)−1(x(0) +G(s)), (8.16)

delivers the Laplace transform of the response in terms of the Laplace transform of the stimulus.
We return to the 2-compartment neuron and assemble the players when

B =

(
−2 1
1 −2

)
and g(t) =

(
t exp(−t)

0

)
. (8.17)

The Laplace transform of g is

G(s) =

∫ ∞

0

exp(−st)
(
t exp(−t)

0

)
dt =

1

(s+ 1)2

(
1
0

)
(8.18)

and the inverse of (sI −B) may be computed from the general formula

(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
. (8.19)

In particular,

(sI −B)−1 =
1

(s+ 1)(s+ 3)

(
s+ 2 1
1 s+ 2

)
. (8.20)

On substitution of G(s) and (sI −B)−1 into (8.16) we find

X(s) =
1

(s+ 1)3(s+ 3)

(
s+ 2
1

)
. (8.21)

It remains to invert the Laplace transform and recover x(t) from X(s). As X(s) was built from
integration in t of x(t) exp(−st) we may expect that x(t) can be recovered by integration in s of
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X(s) exp(st). With the right definition of “integration in s” this is indeed the case. In particular,
the Inverse Laplace Transform of X is

x(t) =
1

2πi

∫

C

X(s) exp(st) ds, (8.22)

where i =
√−1 and C is a closed curve in the complex plane that encircles all of the poles of X .

The poles of X are those values of s for which |X(s)| = ∞. The poles of the X in (8.21) are at
s = −1 and s = −3. Integration in the complex plane is so fundamental for understanding exp(Bt)
that we will devote the next two chapters to it. There we will see that Cauchy’s Integral Formula
draws

x1(t) =
t2 + t− 1/2

4
exp(−t) + 1

8
exp(−3t),

x2(t) =
t2 − t + 1/2

4
exp(−t)− 1

8
exp(−3t)

(8.23)

from (8.22). We have plotted these responses in Figure 8.2. Contrasting (8.23) and (8.20) we see
that the two rates of exponential decay in both x1 and x2 coincide with the two poles of (sI−B)−1.
This matrix, and its poles, are of such central importance to both dynamics and higher linear
algebra that they have been named. In particular, we call (sI − B)−1 the resolvent of B and we
call the poles of the resolvent the eigenvalues of B. The meaning of this German–English hybrid
is better gleaned from its Spanish equivalent, autovalor. This suggests that poles of the resolvent
of B are auto– or self–values of B. To see where this notion of self–value arises, note that if λ is a
pole of the resolvent then (λI−B) has no inverse. In this case the columns of (λI−B) are linearly
dependent and, equivalently, (λI − B) has a nontrivial null space. The latter implies that there
exists and nonzero vector x such that (λI − B)x = 0. On rearranging we find

Bx = λx, (8.24)

and finally arrive at the etymology of self. In particular, in (8.24) there are no exogenous stimuli
or initial conditions for B to respond to. The x and λ are therefore solely reflections of B itself.
Moreover, as Bx is simply a scalar multiple of x we call this x a self–vector and the associated λ and
self–value of B. With the words now unpacked we will revert to their common usage, eigenvalue
and eigenvector.

To take a concrete case we find the eigenvectors of the B in (8.17) associated with the eigenvalues
λ1 = −1 and λ2 = −3. If x1 ∈ N (λ1I − B) then

(
1 −1
−1 1

)(
x1(1)
x1(2)

)
hence x1 = a

(
1
1

)
(8.25)

for any a ∈ R. Similarly, If x2 ∈ N (λ2I − B) then

(
−1 −1
−1 −1

)(
x2(1)
x2(2)

)
hence x2 = a

(
1
−1

)
(8.26)

for any a ∈ R. To visualize the general two-by-two case, and to see how rare it is for matrix to
simply scale a vector, I recommend that you invoke eigshow in Matlab.

The connection between the mysterious representation (8.22) and the less mysterious represen-
tation (8.8) will stem from writing the latter as a convolution and then noting that the Laplace
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Transform is especially well–suited to convolutions. To be precise we define the convolution of
two functions f and g, defined for t > 0, to be

(f ⋆ g)(t) =

∫ t

0

f(t− y)g(y) dy. (8.27)

We will now prove that the Laplace Transform of the convolution of f and g is simply the product
of their Laplace Transforms.

Proposition 8.1 If h(t) = (f ⋆ g)(t) then H(s) = F (s)G(s).

Proof: On taking the Laplace Transform of each side of Eq. (8.27) we find

H(s) =

∫ ∞

0

∫ t

0

f(t− y)g(y) dy e−st dt

=

∫ ∞

0

g(y)e−sy
∫ ∞

0

f(t− y)e−s(t−y) dt dy, as g(y) = 0 for y < 0 and f(t− y) = 0 for y > t

=

∫ ∞

0

g(y)e−sy
∫ ∞

0

f(r)e−sr dr dy, using r = t− y and f(r) = 0 for r < 0

= F (s)G(s),

as claimed. End of Proof.

On reconciling this result with (8.8) and (8.16) we arrive at the conclusion that (sI − B)−1 is
the Laplace Transform of exp(Bt). Or, put the other way round, exp(Bt) is the inverse Laplace
Transform of the resolvent. That is

exp(Bt) =
1

2πi

∫

C

(sI − B)−1 exp(st) ds (8.28)

where C encloses all of the eigenvalues of B. With B and (sI − B)−1 as given, (8.17) and (8.20),
for our 2-compartment neuron Cauchy’s Integral Theorem will reveal the concrete

exp(Bt) =
exp(−t)

2

(
1 1
1 1

)
+

exp(−3t)

2

(
1 −1
−1 1

)
. (8.29)

It is no accident that these two matrices are orthogonal projectors of R2 onto the respective sub-
spaces spanned by the eigenvectors, x1 and x2 from (8.25)–(8.26).

On substition of (8.29) into (8.8) with f(t) = [t exp(−t) 0]T we find

x(t) =

∫ t

0

exp(B(t− y))f(y) dy

=

(
1/2
1/2

)∫ t

0

exp(y − t)y exp(−y) dy +
(

1/2
−1/2

)∫ t

0

exp(3(y − t))y exp(−y) dy

= exp(−t)
(
1/2
1/2

)∫ t

0

y dy + exp(−3t)

(
1/2
−1/2

)∫ t

0

exp(2y)y dy

and so indeed recover (8.23).
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8.3. Numerical Methods

Where in the previous section we tackled the derivative in (8.7) via an integral transform we
pursue in this section a much simpler strategy, namely, integrate the derivative exactly and approx-
imate the integral of the right hand side as a simple sum. More precisely, one chooses a small “time
step,” ε, and replaces the differential equation (8.7), for the function x(t), by a difference equation
for the vector xε = [x(0) x(ε) x(2ε) · · · x((N − 1)ε)], by integrating (8.7) over one time step

∫ nε

(n−1)ε

x′(t) dt = x(nε)− x((n− 1)ε) = xε(n + 1)− xε(n) =

∫ nε

(n−1)ε

Bx(t) + g(t) dt,

and then approximating the integral via a sum involving only values of the integrand at one or both
endpoints, via one of three common choices

∫ nε

(n−1)ε

f(t) dt ≈ ε





f((n− 1)ε) Left

f(nε) Right

(f((n− 1)ε) + f(nε))/2 Average

(8.30)

The Left choice leads to xε(n+ 1)− xε(n) = εBxε(n) + εg((n− 1)ε), that is

Explicit Euler: xε(n+ 1) = (I + εB)xε(n) + εg((n− 1)ε). (8.31)

The Right choice leads to xε(n+ 1)− xε(n) = εBxε(n+ 1) + εg(nε), that is

Implicit Euler: (I − εB)xε(n+ 1) = xε(n) + εg(nε). (8.32)

The Average choice leads to xε(n+1)−xε(n) = εB(xε(n+1)+xε(n))/2+ ε(g(nε)+ g((n−1)ε))/2,
that is

Trapezoid: (I − (ε/2)B)xε(n + 1) = (I + (ε/2)B)xε(n) + ε(g(nε) + g((n− 1)ε))/2. (8.33)

Each of these provide means to march through time by computing the next element of xε in terms
of its current value. We will implement and study the Implicit method here and the other two
methods in the exercises.

Regarding implementation we find

xε(n+ 1) = (I − εB)\(xε(n) + εg(nε)), (8.34)

and code this in cab2.m for the circuit of Figure 8.2.

% cab2.m Implicit Euler on the 2-compartment neuron

B = [-2 1;1 -2];

eps = 0.1;

N = ceil(10/eps);

[L,U] = lu(eye(2)-eps*B);

x = zeros(2,N);

t = zeros(1,N);

for n=2:N,

t(n) = (n-1)*eps;

g = [t(n)*exp(-t(n)); 0];

x(:,n) = L\(U\(x(:,n-1) + eps*g));

end

plot(t,x)
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We compare the performance of this procedure with the exact solution in Figure 8.3. We have
chosen large values of ε for ease of illustration. You may wish to confirm that the approximation
“looks” much better at much smaller ε.
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Figure 8.3. We contrast the exact solution, x1(t), in (8.23), in black at times t = (0.25)n, with
solutions delivered by cab2. with ε = 0.5 (dashed blue) and ε = 0.25 (solid blue).

In order to see, mathemticallly, that the Implicit Euler solution, xε, indeed approaches the exact
solution, x, as ε → 0 lets first suppose that the stimulus, g, is zero. In this case, (8.34) may be
written

xε(n) = ((I − εB)−1)nx(0). (8.35)

Now, for a fixed time t we suppose that ε = t/n and ask whether

x(t) = lim
n→∞

((I − (t/n)B)−1)nx(0). (8.36)

We will here establish the truth of (8.36) for scalar B and then return to the matrix case in Chapter
11. If B ∈ R and n > |Bt| then

((I − (t/n)B)−1)n =

(
1

1− Bt/n

)n

= exp((log(1/(1− Bt/n)))n)

= exp(n log(1/(1− Bt/n)))

= exp(−n log(1− Bt/n))

= exp(−n(−Bt/n +O(1/n2)))

→ exp(Bt) as n→ ∞.

(8.37)

The second equality follows from exp being the inverse function of log, i.e., x = exp(log(x)). The
remaining steps follow from basic properties of log: (log(x))n = n log(x), log(1/x) = − log(x) and
log(1 − x) = −x + O(x2) where O(x2) indicates terms that go to zero at least as fast as x2 when
x→ 0.

Returning to the question posed in (8.36), we have shown that xt/n(n) → exp(Bt)x(0) as n→ ∞,
when B is scalar and the stimulus is zero. Comparing this with our analytical findings, (8.8), we
conclude that the approximate solution, xt/n(n), computed by the Implicit Euler Method, indeed
converges to the solution of the dynamical system x′(t) = Bx(t).

At this point we have developed analytical and numerical approaches to differential equations
of the form x′(t) = Bx(t) + g(t). In §8.5 we will investigate the extent to which our analytical
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approach provide insight into the behavior of solutions to differential equations of the form

x′(t) = F (t, x(t)), (8.38)

where F may be, in general, a nonlinear function of each of its arguments. We begin the numerical
integration of (8.38) by applying our Trapezoidal scheme

xε(n+ 1)− xε(n) = ε{F (nε, xε(n)) + F ((n+ 1)ε, xε(n+ 1))}/2. (8.39)

The difficulty in marching from xε(n) to xε(n + 1) is that the latter now appears “inside” the
nonlinear F as the last term in (8.39). There are many ways to work our way out from under
this nonlinearity. One popular scheme, known as Heun’s Method, is to approximate this latter
xε(n+ 1) by with its Explicit Euler update from xε(n). That is, to replace (8.39) with

xε(n+ 1) = xε(n) + ε{F (nε, xε(n)) + F ((n+ 1)ε, xε(n) + εF ((n+ 1)ε, xε(n)))}/2. (8.40)

We note that this is fully explicit but much more accurate than Explicit Euler. To code this we
need only specify the function F , the initial values x(0), the final time, T , and the timestep, ε.

function [t,x] = heun(F,x0,T,eps)

N = ceil(T/eps);

m = length(x0);

x = zeros(m,N);

x(:,1) = x0;

t = zeros(1,N);

for n=2:N

t(n) = eps*(n-1);

F1 = F(t(n-1),x(:,n-1));

F2 = F(t(n),x(:,n-1));

F3 = F(t(n),x(:,n-1) + eps*F2);

x(:,n) = x(:,n-1) + eps*(F1 + F3)/2;

end

return

We test this on a Goodwin Oscillator

x′1(t) =
1

1 + x2(t)
− 1/2

x′2(t) = x1(t)− 1

(8.41)

with initial values x(0) = [1; 2], final time T = 20 and timestep ε = 0.01 via

>> [t,x] = heun(@goodwin,[1;2],20,0.01);

>> plot(t,x(1,:),t,x(2,:))

where goodwin is encoded as

function dx = goodwin(t,x)

dx(1,1) = 1/(1+x(2)) - 1/2;

dx(2,1) = x(1) - 1;

return
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We have plotted both x1 and x2 against t and against one another in Figure 8.4.
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Figure 8.4. Solutions of the Goodwin Oscillator, (8.41), via Heun’s Method. (A) The two elements
of x vs. time. (B) The trajectory (x1(t), x2(t)) produces a closed curve as t increases.

The closed curve in the (x1, x2) plane in Figure 8.4(B) encircles the steady state solution x1 =
x2 = 1 to (8.41). This curve is in fact uniquely prescibed by the choice of initial data. You are
encouraged to experiment with both smaller and larger values.

8.4. Dynamics of Mechanical Networks

Regarding the mechanical networks of Chapter 3, we may move from the equilibrium equations,

Sx = f, where S = ATKA,

for the displacement x due to a constant force, f , to the dynamical equations for the displacement,
x(t), due to a time varying force, f(t), and/or nonequilibrium initial conditions, by simply appending
the Newtonian inertial terms. That is,

Mx′′(t) + Sx(t) = f(t), x(0) = x0, x′(0) = v0, (8.42)

whereM is the diagonal matrix of node masses, x0 denotes their initial displacement and v0 denotes
their initial velocity. We transform this system of second order differential equations to an equivalent
first order system by introducing

u1 ≡ x and u2 ≡ u′1

and then noting that (8.42) takes the form

u′2 = x′′ = −M−1Su1 +M−1f(t).

As such, we find that u = (u1 u2)
T obeys the familiar

u′ = Bu+ g, u(0) = u0 (8.43)

where

B =

(
0 I

−M−1S 0

)
, g =

(
0

M−1f

)
, u0 =

(
x0
v0

)
. (8.44)

Example 1: As our first example of (8.44) we consider, see Figure 8.5, a single mass, of mass m,
suspended by a single spring, of stiffness k. In this case

B =

(
0 1

−ω2 0

)
(8.45)
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where ω2 = k/m.
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Figure 8.5. (A) A single mass suspended from a single spring. (B) The response of the mass to a
driving force sin(at) as derived in (8.49) and (8.50).

Via Gauss–Jordan or (8.19) we find that

(sI −B)−1 =
1

s2 + ω2

(
s 1

−ω2 s

)
(8.46)

has poles at ±iω where i ≡
√
−1 is the imaginary unit. Invoking (8.28) (will) then bring

exp(Bt) =
exp(iωt)

2iω

(
iω 1
−ω2 iω

)
− exp(−iωt)

2iω

(
−iω 1
−ω2 −iω

)
=

(
cos(ωt) sin(ωt)/ω

−ω sin(ωt) cos(ωt)

)
(8.47)

Thanks to the beautiful identities

cos(ωt) =
exp(iωt) + exp(−iωt)

2
and sin(ωt) =

exp(iωt)− exp(−iωt)
2i

(8.48)

to be proven in the next chapter. In the unloaded case, f = 0, and no intial velocity, v0 = 0, it
follows that the displacement is simply x(t) = x0 cos(ωt). Conversely, with no initial displacement
or velocity but with driving force f(t) = sin(at) we find

x(t) =
1

mω

∫ t

0

sin(ωy) sin(a(t− y)) dy =
sin(ωt)− sin(at)

2mω(a− ω)
+

sin(ωt)− sin(at)

2mω(a+ ω)
. (8.49)

From this we see that as the driving frequency, a, approaches ω the displacement approaches

x(t) =
sin(ωt)

2mω2
− t cos(ωt)

2mω
. (8.50)

As the amplitude of this displacement grows with time we speak of ω as the resonant frequency
of our system. It is no accident that the resonant frequency is the imaginary part of the eigenvalue
of the associated B matrix, (8.45). We have illustrated this phenomenon in Figure 8.5(B).

Example 2: For our second example we consider the chain of 2 masses in Figure 8.6(A). If each
node has mass m and each spring has stiffness k then

M−1S = ω2

(
2 −1
−1 2

)
and hence B =




0 0 1 0
0 0 0 1

−2ω2 ω2 0 0
ω2 −2ω2 0 0



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and so,

(sI −B)−1 =
1

(s2 + ω2)(s2 + 3ω2)




s(s2 + 2ω2) sω2 s2 + 2ω2 ω2

sω2 s(s2 + 2ω2) ω2 s2 + 2ω2

−ω2(2s2 + 3ω2) s2ω2 s(s2 + 2ω2) sω2

s2ω2 −ω2(2s2 + 3ω2) sω2 s(s2 + 2ω2)


.

We did not compute this by hand via Gauss–Jordan but rather invoked the symbolic toolbox in
Matlab. In particular,

>> syms s

>> inv(s*eye(4)-B)

does the job. We see that this resolvent has poles at ±iω and ±iω
√
3 and that they appear explicitly

in the associated matrix exponential

exp(Bt) =
1

2




cos(ωt) cos(ωt) sin(ωt)/ω sin(ωt)/ω
cos(ωt) cos(ωt) sin(ωt)/ω sin(ωt)/ω

−ω sin(ωt) −ω sin(ωt) cos(ωt) cos(ωt)
−ω sin(ωt) −ω sin(ωt) cos(ωt) cos(ωt)




+
1

2




cos(ω
√
3t) − cos(ω

√
3t) sin(ω

√
3t)/(ω

√
3) − sin(ω

√
3t)/(ω

√
3)

− cos(ω
√
3t) cos(ω

√
3t) − sin(ω

√
3t)/(ω

√
3) sin(ω

√
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√
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√
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√
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√
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√
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√
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


Hence, if f(t) = sin(at)[u1 u2]
T then

x1(t) =
((a/ω) sin(ωt)− sin(at))(u1 + u2)

2(a2 − ω2)
+

((a/
√
3ω) sin(

√
3ωt)− sin(at))(u1 − u2)

2(a2 − 3ω2)

x2(t) =
((a/ω) sin(ωt)− sin(at))(u1 + u2)

2(a2 − ω2)
− ((a/

√
3ω) sin(

√
3ωt)− sin(at))(u1 − u2)

2(a2 − 3ω2)
.

(8.51)

Contrasting this response with that of the single mass system, (8.49), we see that the two–mass
system has two distinct modes of vibration. Namely, if u1 = u2 then x1(t) = x2(t) while if
u1 = −u2 then x1(t) = −x2(t). In general the response is a mixture of these two modes, see, e.g.,
Figure 8.6(B), where a = 2 and u = [1 0]T . With this same u we illustrate in Figure 8.6(C and D)
resonance at a = ω and a =

√
3ω. As in the one–mass example, the resonant frequencies of the

mechanical network are precisely the imaginary parts of the eigenvalues of the associated B matrix.
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Figure 8.6. (A) The two–mass, two–spring network. (B) The displacements of the 2 masses, with
k/m = 1 = ω2 and driving force f(t) = sin(at)[1 0]T and a = 2. (C) The displacements for the
same conditions as in (B) except a = 1. (D) The displacements for the same conditions as in (B)
except a =

√
3. ms2.m

We note that Implicit Euler is just as useful here as in the circuit case. In particular, changing
the system and stimulus in cab2.m brings

% chain2.m

S = [2 -1;-1 2];

B = [zeros(2) eye(2); -S zeros(2)];

eps = 0.0001;

N = ceil(40/eps);

[L,U] = lu(eye(2)-eps*B);

x = zeros(4,N);

t = zeros(1,N);

for n=2:N,

t(n) = (n-1)*eps;

g = [0; 0; sin(2*t(n)); 0];

x(:,n) = L\(U\(x(:,n-1) + eps*g));

end

plot(t,x(1:2,:))

This code indeed replicates Figure 8.6(B), although with significantly greater effort (as measured
by the timestep ε) than that required of cab2.m.

8.5. Dynamics of Metabolic Networks∗

We recall the steady state state flux balance Sv = f is the rest state of

m′(t) = Sv − f (8.52)

where to “close” this system we must express v as a function of m. This field is highly complex
and there is nothing as clean as the early phases of the Strang Quartet, i.e., we may not expect
v = DSTm for some diagonal matrix D. Rather each vj(m) is typically a distinct nonlinear function
of the associated metabolite concentrations.
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To begin we consider the interaction of two metabolites via

→ m1 at rate v0

m1 → m2 at rate v1

m1 → at rate v2

m2 → at rate v3

where the feed flux, v0, is fixed and the two decay fluxes are linear

v2 = 5m2 and v3 = m1,

while the flux from m1 to m2 obeys the nonlinear law

v1 = m1(1 +m3
2).

In terms of the general case, (8.52), this produces the concrete nonlinear system

m′
1(t) = v0 −m1(1 +m3

2)−m1

m′
2(t) = m1(1 +m3

2)− 5m2.
(8.53)

Our first goal is to demonstrate (numerically) that solutions to this system behave in three very
distinct ways, depending on the size of the input, v0. We use Heun’s method from §8.3 to solve
(8.53), from two choices of initial data and for three choices of v0, and present our findings in
Figure 8.7.
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Figure 8.7. Behavior of the nonlinear metabolic network, (8.53), at three distinct input fluxes:
v0 = 1, 7 and 10. In the top row we plot (m1(t), m2(t)) commencing from initial metabolite levels
(1.5, 1.75) (solid) and (2, 2.4) (dashed). In the bottom row we plot the associated (t,m1(t)) (black)
and (t,m2(t)) (red) with the solid/dash convention as above.

In panels (A) and (B) of Figure 8.7, with v0 = 1, we see exponential decay to a steady state. A
solution of (8.53) is called a steady state if it does not depend on t. For the situation illustrated in
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panels (A) and (B) we call its steady state and stable node. It is stable in the sense that nearby
initial conditions are attracted to it while the word node is used to distinguish it from the spiral,
which comes next.

In panels (C) and (D) of Figure 8.7, with v0 = 7, we see exponential decaying oscillation to a
steady state and we call this state a stable spiral because (with an eye on panel (C)) neighboring
initial conditions spiral into it.

In panels (E) and (F) of Figure 8.7, with v0 = 10, we see exponential decay (from without) and
growth (from within) to an oscillatory, in fact periodic, state. The growth from within is actually
away from steady state that we hence call an unstable spiral. This periodic state is called (with
an eye to panel (E)) a stable limit cycle because nearby initial states cycle into to it over time.

In order to see that these modes of behavior, and associated labels, are not merely artifacts of our
particular system of equations or choice of initial conditions we need a more systematic approach.
Although we can not find an exact solution for such systems, we can use our analytical tools to
study its solution in the neighborhood of its steady state solution. To begin, let us write (8.53)
more succinctly as

m′(t) = F (m(t)). (8.54)

We call a vector m a steady state of (8.54) when F (m) = 0. The steady state of (8.53) for example
obeys

m1 =
5m2

1 +m3
2

and 5m4
2 − v0m

3
2 + 10m2 − v0 = 0. (8.55)

If we choose initial data close to m it seems reasonable that m should remain close to m for small
time, and that during this time the function F might be well approximated by the first term in its
Taylor expansion. More precisely, we suppose that

m(t) ≈ m+ εp(t) and F (m+ εp(t)) ≈ F (m) + ε∇F (m)p (8.56)

where ε is small, p is the “perturbation” of m, and ∇F (m), the gradient of F at m, is the matrix
of partial derivatives

∇F (m) =

( ∂F1

∂m1
(m) ∂F1

∂m2
(m)

∂F2

∂m1
(m) ∂F2

∂m2
(m)

)
.

In the case of (8.53) we have F1(m) = v0 − 2m1 −m1m
3
2 and F2(m) = m1(1 +m3

2)− 5m2 and so

∇F (m) =

(
−(2 +m3

2) −3m1m
2
2

1 +m3
2 3m1m

2
2 − 5

)
.

On substituting our approximations, (8.56), into (8.54) we find m′ = (m+ εp)′ = ε∇F (m)p, which
upon dividing by ε, yields a linear system of differential equations for p,

p′ = Bp, B ≡ ∇F (m), (8.57)

that is amenable to our analytical tools. In the case of our example system, (8.53), this B matrix is

B =

(
−(2 + a) −15a/(1 + a)
1 + a 15a/(1 + a)− 5

)
where a = m3

2

The behavior of this system is completely determined by the poles of

(sI −B)−1 =
1

(1 + a)s2 + (a2 − 7a+ 7)s+ 5a2 + 10

(
(1 + a)s− 10a+ 5 −15a

(1 + a)2 (1 + a)(2 + a+ s)

)
.
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That is, by

λ±(a) ≡
7a− a2 − 7±

√
D(a)

2(a+ 1)
, where D(a) = a4 − 34a3 + 43a2 − 138a+ 9. (8.58)

We will first determine how these poles travel with a and then translate this, via a = m3
2 and (8.55),

into conclusions that help us to better understand, and eventually transcend, Figure 8.7.
As a increases from zero we note λ±(a) are real (and negative) until a reaches the first real zero

of D(a) at a1 = 0.0665. These pole are visible in Figure 8.8(A) as the two pair of (black) real
poles in the vicinity of λ = −3. As a approaches a1 from below λ+(a) and λ−(a) coincide and then
split into a complex conjugate pair (blue) with negative real part, until a reaches the first root of
7a − a2 − 7 at a2 = 1.2087. As a increases beyond a2 the real part of λ± becomes positive (red)
until a reaches the second root of 7a− a2 − 7 at a3 = 5.7913. After this point the poles are again a
complex conjugate pair with negative real part (blue again), until a reaches the second (and final)
real root of D(a) at a4 = 32.8176. For a beyond a4 the poles remain distinct real and negative
(black again) in the vicinity of λ = −12.
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Figure 8.8. (A) Tracking the poles, λ±(a), as a increases from 0 to 33 in steps of 0.05. As a
increases to a1 the black pair of poles collide near λ = −3 and turn blue while they remain in the
left half plane, {z ∈ C : ℜz < 0}, until a = a2 after which we paint the poles red. They re-enter
the left half plane at a = a3 and we again color the poles blue until they collide once again when
a = a4 near λ = −12 after which they turn black and real. metaeigtrack.m (B) The plot of a vs.

v0 derived from a = m3 and v0 = 5m1/3(a + 2)/(a + 1) per (8.55). The four transition points in a
map onto four transition points for v0. metav0a.m

If the behavior of the full nonlinear system, (8.54), for initial data in the vicinity of a steady
state, m, is indeed captured by the associated linear system (8.57) then we may glean all from
the matrix exponential exp(Bt). As the latter is governed by the scalar exponentials, exp(λ±), we
see that states near m are attracted to m if the real part of λ± is negative and are repelled if the
real part is positive. If the associated imaginary part is nonzero then attraction/repulsion will be
oscillatory. With this we may now reconcile Figures 8.7 and 8.8. In particular, from Figure 8.8 we
learn that that λ± are real and negative for v0 < 4. Hence exp(λ±t) are both decaying exponentials,
in agreement with the stable node exhibited in Figure 8.7(A–B).

Returning to Figure 8.8 we see for 4 < v0 < 7.9 that λ± are nonreal but have negative real
part and hence solutions are decaying oscillations, in agreement with the stable spiral exhibited in
Figure 8.7(C–D).
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Next, from Figure 8.8 we see for 7.9 < v0 < 10.2 that λ± are nonreal but have postive real
part and hence solutions are growing oscillations, in agreement with the unstable spiral exhibited
in Figure 8.7(E–F).

Our analysis now permits us to make predictions about regions of v0 untested in the empirical
solutions of Figure 8.7. In particular, Figure 8.8, predicts that the steady state is a stable spiral
when 10.2 < 0 < 16.2 and a stable node after that.

8.6. Notes and Exercises

In §8.5 we suggested that the behavior of solutions to the nonlinear system m′(t) = F (m(t))
near a steady state, m, could be predicted by the behavior of the associated linear system, p′(t) =
∇F (m)p, and we supported our suggestion with a two dimensional example. We offer a 3 dimen-
sional example in Exer. 8.14. This prediction is better known as the Hartman–Grobman Theorem.
Please see Perko (1991) for a precise statement and proof.

Our presentation of the Goodwin Oscillator follows Gonze and Abou-Jaoud (2013).
Our presentation of Metabolic Networks follows Heinrich et al. (1977).

1. For matrices with special powers we may sum the Taylor series, (8.9), by hand and arrive at
the matrix exponential. We considered a few easy examples in Chapter 1. In particular lets
return to (1.35).

(a) Show that if

B =

(
1 2
0 1

)
then Bn =

(
1 2n
0 1

)
(8.59)

for n = 0, 1, 2, . . ..

(b) Use (a) to show that

exp(Bt) =

(∑∞
n=0 t

n/n!
∑∞

n=0 2nt
n/n!

0
∑∞

n=0 t
n/n!

)
= exp(t)

(
1 2t
0 1

)
.

Carefully explain your confirmation of the off diagonal term.

2. This previous example is rewarding but rare. We seek larger classes of matrices for which the
sums in (8.9) may be expressed.

(a) The easiest case is the nilpotent case. Perhaps you ran into these matrices in §4.4. We call
B nilpotent if Bm = 0 for some positive integer m. In this case (8.9) reduces to the finite
sum

exp(Bt) =

m−1∑

k=0

(Bt)k

k!
. (8.60)

Show that

B =

(
0 1
0 0

)

is nilpotent and use (8.60) to express its matrix exponential.

(b) The next easiest class is the class of projection matrices. For if P 2 = P then P k = P for
integer k ≥ 1. Show that if P 2 = P then

exp(Pt) = I − P + exp(t)P. (8.61)
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(c) The next easiest class is the class of weighted sums of independent projection matrices. For
example, show that if

B = λ1P1 + λ2P2 where P 2
1 = P1, P

2
2 = P2, P1P2 = P2P1 = 0, P1 + P2 = I

and λ1 and λ2 are scalars then

exp(Bt) = exp(λ1t)P1 + exp(λ2t)P2. (8.62)

Show that (8.29) is an example of this class by identifying the λj and Pj.

3. Confirm, by hand, the following Laplace transforms

(a) If u(t) = exp(t) then U(s) = 1/(s− 1).

(b) If u(t) = t exp(−t) then U(s) = 1/(s+ 1)2.

(c) If u(t) = sin(t) then U(s) = 1/(s2 + 1). Hint: Integrate by parts twice.

4. Confirm that the B matrix in (8.17) and its matrix exponential in (8.29) obey (exp(Bt))′ =
B exp(Bt).

5. Our initial brush with the eigenvalues of the matrix B defined them as the poles of the resolvent,
(sI −B)−1. In other words, as those values of s at which (sI −B) is not invertible. Recalling
our work in §3.2 it follows that the eigenvalues of B are precisely those s for which sI−B has a
zero pivot. Recalling the definition of the determinant, Definition 3.2, we note that det(sI−B)
is either plus or minus the product of these pivots and hence s is an eigenvalue of B when
det(sI − B)=0. Let us put this into practice in the 2–by–2 case where

B =

(
a b
c d

)
.

(a) Show that det(sI − B) = s2 − (a+ d)s+ ad− bc.

(b) Show that (a) can be re-expressed as det(sI − B) = s2 − tr(B)s + det(B) and hence that
the eigenvalues of B are

λ± =
trB ±

√
(trB)2 − 4 det B

2
. (8.63)

(c) The expression in (b) permits us to classify the eigenvalues (and therefore the behavior of
the associated dynamical system) by where the point (det(B), tr(B)) lies in the (d, t) plane.

d

t

t2=4d

I

II

III

IVV

VI
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Figure 8.9. The coordinate axes and the curve t2 = 4d partition the (d, t) plane into 5 regions
that correspond to qualitatively distinct dymanics.

Please show that

In region I, λ± are real and negative.

In region II, λ± are nonreal but in LHP

In region III, λ± are nonreal in RHP

in region IV, λ± are real and positive

In regions V, λ± are real and of different signs.

6. In order to visualize the convolution, (8.27), of two functions let us see that the convolution
of two blocks is a trapezoid. In particular, suppose that g and f are the step functions
f(y) = 1(0,1)(y) and g(y) = 1(2,4)(y). Show that (f ⋆ g)(t) is the length of the overlap of the
intervals (t− 1, t) and (2, 4), as in Figure 8.10, and so

(f ⋆ g)(t) =





0 if t ≤ 2

t− 2 if 2 ≤ t ≤ 3

1 if 3 ≤ t ≤ 4

5− t if 4 ≤ t ≤ 5

0 if 5 ≤ t.
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Figure 8.10. The integrand f(t− y)g(y) for increasing values of t. The convolution at each t
is the area of the shaded region, of overlap of g and a shifted copy of f .

7. Regarding the errors produced in the integral approximations (8.30), show

(a) If f is constant then the three choices agree and are exact.

(b) If f is linear, e.g., f(t) = 1 + t, then the three choices give three distinct values and that
the average choice is exact.

8. We return to the Implicit Euler scheme and show that xt/n(n) → x(t) even with a stimulus.

(a) If g 6= 0 then argue that (8.35) takes the form

xε(n) = ((I − εB)−1)n

(
x(0) + ε

n∑

k=1

(I − εB)k−1g(kε)

)
.
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Again setting ε = t/n we arrive at

xt/n(n) = ((I − (t/n)B)−1)n

(
x(0) + (t/n)

j∑

k=1

(I − tB/n)k−1g(kt/n)

)
.

(b) Argue as in (8.37) that the coefficients of the g terms above obey

(I − (t/n)B)k−1 = exp(−B(kt/n)) +O(1/n), (8.64)

and so arrive at

xt/n(n) = ((I − (t/n)B)−1)n

(
x(0) +

t

n

n∑

k=1

exp(−Btk/n)g(tk/n) +O(1/n)
t

n

n∑

k=1

g(tk/n)

)
.

(c) Explain why

lim
n→∞

(t/n)

n∑

k=1

g(tk/n) =

∫ t

0

g(y) dy

and

lim
n→∞

(t/n)
n∑

k=1

exp(−Btk/n)g(tk/n) =
∫ t

0

exp(−By)g(y) dy,

and finally that xt/n(n) → x(t) where x is the solution of (8.8).

9. With resistors, capacitors and opamps we can design filters. Consider the circuit of Figure 8.11
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Figure 8.11. A low pass filter circuit and its gain vs. frequency.

(a) From the two current balances, y1 − y2 = 0 and y3 + y4 = 0 derive the pair of equations

R1C1x
′
1(t) = v(t)− x1(t), x2(t) = (1 +R3/R2)x1(t). (8.65)

(b) Note that τ ≡ R1C1 has units of time and use Eq. (8.4) to conclude that

x1(t) = exp(−t/τ)x1(0) +
1

τ

∫ t

0

exp((y − t)/τ)v(y) dy.

(c) Suppose that x1(0) = 0 and v(y) = sin(2πωy) and conclude that

x1(t) =
sin(2πωt) + 2πωτ{exp(−t/τ)− cos(2πωt)}

1 + (2πωτ)2
. (8.66)
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Note that as the numerator is of order ω while the denominator is of order ω2 that the magni-
tude of x1(t) will decrease with increasing frequency. As such we call the circuit of Figure 8.11
a low pass filter.

(d) Use Eq. (8.14) to take the Laplace Transform of Eq. (8.65) (with again x1(0) = 0) and
show that

X2(s) = H(s)V (s) where H(s) =
1 +R3/R2

1 + τs
.

We speak of H as the transfer function. Graph its associated

Gain(ω) ≡ 20 log10 |H(2πiω)|,
as in Figure 8.11(B) for the concrete choice

R1 = 98.8 kΩ, R2 = 978 kΩ, R3 = 100.6 kΩ and C1 = 10.4nF.

10. Adapt the Backward Euler portion of fib3.m so that one may specify an arbitrary number
of compartments, as in fib1.m. As B, and so S, is now large and sparse please create the
sparse B via spdiags and the sparse I via speye, and then prefactor S into LU and use U\L\
rather than S\ in the time loop. Experiment to find the proper choice of dt. Submit your
well documented M-file along with a plot of x1 and x50 versus time (on the same well labeled
graph) for a 100 compartment cable.

11. Find the eigenvectors, by hand, of the B matrix, (8.45), associated with the single vibrating
mass. The eigenvalues are ±iω and so you must find the two null spaces N (±ωI −B).

12. The restoring force of a viscous damper is proportional to the velocity of the attached mass.
In the notation of Figure 8.12(A) this reads yd(t) = dx′(t) and so force balance takes the form

mx′′(t) + dx′(t) + kx(t) = f(t).

k

d

m

x

f

(A)

0 2 4 6 8 10 12 14 16
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

x

 

 

(B) d/m=3
d/m=1
d/m=2

Figure 8.12. (A) One mass attached to a spring and a damper. (B) The response of the
system to the initial disturbance x(0) = 1, x′(0) = 0 when k/m and d/m is either the under–,
over–, or critically damped regime.

(a) Express this as a first order system, u′ = Bu+ g.

(b) Show that

(sI − B)−1 =
1

s2 + (d/m)s+ (k/m)

(
s + d/m 1
−k/m s

)
(8.67)

147



(c) Show that the poles of (sI − B)−1 are at

λ± ≡ −d±
√
d2 − 4km

2m
.

Note that these are real and distinct when d2 > 4km, real and coincident when d2 = 4km, and
nonreal and distinct when d2 < 4km. We will see that these three scenarios lead to distinctly
different responses.

(d) Show that if d2 6= 4km then

exp(Bt) =
exp(λ+t)

λ+ − λ−

(
λ+ + d/m 1
−k/m λ+

)
+

exp(λ−t)

λ− − λ+

(
λ− + d/m 1
−k/m λ−

)

satisfies (exp(Bt))′ = B exp(Bt).

(e) Use u(t) = exp(Bt)u(0) to show that if u(0) = [1 0]T then

x(t) =
exp(λ+t)(λ+ + d/m)

λ+ − λ−
+

exp(λ−t)(λ− + d/m)

λ− − λ+
= exp(−dt/(2m))(cosh(δt/(2m)) + d sinh(δt/(2m))/δ)

(8.68)

where δ ≡
√
d2 − 4km.

(f) If d2 > 4km then δ > 0 and the system is called overdamped because the x in (8.68)
decays to zero without oscillation. For example, if k/m = 1 and d/m = 3 then

x(t) = exp(−3t/2)(cosh(
√
5t/2) + 3 sinh(

√
5t/2)/

√
5)

(g) If d2 < 4km then δ = i2mωd where ωd ≡
√
4km− d2/2m and the system is called un-

derdamped because the x in (8.68) oscillates as it decays to zero. To understand this we
unpack

cosh(δt/(2m)) = cosh(iωdt) =
exp(iωdt) + exp(−iωdt)

2
= cos(ωdt)

and similarly for sinh and so arrive at

x(t) = exp(−dt/(2m))(cos(ωdt) + d sin(ωdt)/δ).

Show that the natural frequency, ωd, of the underdamped system is less that the natural
frequency, ω =

√
k/m, of the undamped system. For example, if k/m = 1 and d/m = 1 then

x(t) = exp(−t/2)(cos(
√
3t/2) + sin(

√
3t/2)/

√
3).

(h) Finally, if d2 = 4km we call the system critically damped. Rather than working all the
way back through a new exp(Bt), simply let δ → 0 in (8.68) to arrive at

x(t) = exp(−dt/(2m))(1 + dt/(2m)).

For example, if k/m = 1 and d/m = 2 then

x(t) = exp(−t)(1 + t).
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13. Find the steady state, x, of the Goodwin Oscillator (8.41), evaluate (by hand) the associated
gradient B = ∇F (x), and show (by hand) that the eigenvalues of B are purely imaginary. In
this situation we declare x neutrally stable and call it a center.

14. Our Goodwin Oscillator, (8.41), is a stripped down version of his original system

x′1(t) = k1
Kn

Kn + xn3 (t)
− k2x1(t)

x′2(t) = k3x1(t)− k4x2(t)

x′3(t) = k5x2(t)− k6x3(t)

(8.69)

Let us set the coefficients

k1 = k3 = k5 = K = 1 and k2 = k4 = k6 = 1/10 (8.70)

and investigate the stability of steady state solutions of (8.69) as n varies through the small
positive integers.

(a) At steady state show that xn+1
3 + x3 = 1000 and that x1 and x2 are known multiples of x3.

(b) Show that the associated gradient is of the form

B = ∇F (x) =



−1/10 0 −α3

1 −1/10 0
0 1 −1/10




and express α in terms of n and x3.

(c) Show that the eigenvalues of B are

−α− 1/10 and α
1± i

√
3

2
− 1/10

and hence that they lie in the left half plane so long as α ≤ 1/5.

(d) Use (a), (b) and (c) to show that the eigenvalues of B lie in the left half plane so long as
n ≤ 8.

(e) Check the predictions of (d) by solving (8.69), with the parameter set (8.70), via Heun’s
method with n = 6 and n = 12 and so reproduce Figure 8.13
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Figure 8.13. Numerical solution of (8.69)–(8.70) from initial data x1(0) = x2(0) = x3(0) = 1
at n = 6 and n = 12. Discuss these solutions in light of the predictions made in part (d).
good3dyn.m
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15. Check the predictions made at the end of §8.5 by solving (8.53) via Heun’s method and showing
that v0 = 15 gives rise to a stable spiral and v0 = 18 yields a stable node.
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9. Complex Numbers, Functions and Derivatives

In this Chapter we investigate the algebra and geometry of the complex plane, C, and begin
the study of the calculus of functions from C to C. Although there may be much that is new
about this chapter – the basic tool of Partial Fraction Expansion is elementary and perhaps fondly
remembered from real calculus. Our intent here is to prepare the way for the complex integration
required to make sense of the resolvent, eigenvalue problem and the inverse Laplace transform and
their role in understanding dynamics – though we pause to develop the basics of Fourier Series and
Transforms and its application to Time Series.

9.1. Complex Numbers

A complex number is simply a pair of real numbers. In order to stress however that the two
algebras differ we separate the two real pieces by the symbol +i. More precisely, each complex
number, z, may be uniquely expressed by the combination x + iy where x and y are real and i
denotes

√
−1. We call x the real part and y the imaginary part of z. We now summarize the

main rules of complex arithmetic. If

z1 = x1 + iy1 and z2 = x2 + iy2

then
z1 + z2 ≡ (x1 + x2) + i(y1 + y2)

z1z2 ≡ (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1)

z1 ≡ x1 − iy1,

z1
z2

≡ z1
z2

z2
z2

=
(x1x2 + y1y2) + i(x2y1 − x1y2)

x22 + y22

|z1| ≡
√
z1z1 =

√
x21 + y21.

In addition to the Cartesian representation z = x+ iy one also has the polar form

z = |z|(cos θ + i sin θ), (9.1)

where |z| is the magnitude of z and θ is the angle that it make with the positive real axis. We have
illustrated these various representations in Figure 9.1.
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Figure 9.1. (A) An illustration of the complex number z1 = x1+ iy1 = |z1|(cos θ+ i sin θ). (B) The
trajectory of ((1 + i)/1.6)n as n grows 1 to 32.
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The polar form is especially convenient with regards to multiplication. More precisely,

z1z2 = |z1||z2|{(cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2)}
= |z1||z2|{cos(θ1 + θ2) + i sin(θ1 + θ2)}.

As a result, for integer values of n, we find

zn = |z|n(cos(nθ) + i sin(nθ)).

This formula dictates that taking powers of a complex number simultaneously scales its magnitude
and rotates its argument. The spiral in Figure 9.1(B) offers a concrete illustration.

A complex vector (matrix) is simply a vector (matrix) of complex numbers. Vector and matrix
addition proceed, as in the real case, from elementwise addition. The inner product of two complex
vectors requires, however, some care. This is evident when we try to use the old notion to define
the length of complex vector. To wit, note that if

z =

(
1 + i
1− i

)

then
zT z = (1 + i)2 + (1− i)2 = 1 + 2i− 1 + 1− 2i− 1 = 0.

Now norm should measure the distance from a point to the origin and should only be zero for the
zero vector. The fix, as you have probably guessed, is to sum the squares of the magnitudes of
the components of z. This is accomplished by simply conjugating one of the vectors. Namely, we
define the norm of a complex vector via

‖z‖ ≡
√
zT z. (9.2)

In the example above this produces
√

|1 + i|2 + |1− i|2 =
√
4 = 2.

As each real number is the conjugate of itself, this new definition subsumes its real counterpart.
The double symbol, conjugate transpose, occurs so often – for both vectors and matrices – that it
has been contracted to a single symbol. Namely

Z∗ ≡ Z
T
, Z ∈ Cm×n. (9.3)

The notion of magnitude in (9.2) also gives us a way to define limits and hence will permit us to
introduce complex calculus. We say that the sequence of complex numbers, {zn : n = 1, 2, . . .},
converges to the complex number z0 and write

zn → z0 or z0 = lim
n→∞

zn,

when, presented with any ε > 0 one can produce an integer N for which |zn− z0| < ε when n ≥ N .
As an example, we note that (i/2)n → 0, for given an ε we note that if n > N = log2(1/ε) then
|(i/2)n| < ε. Similarly, the series

∞∑

n=1

zn
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is said to converge to the number Z if the sequence of partial sums

Zn ≡
n∑

m=1

zm

converge to Z. We shall make use of

Proposition 9.1. If zj → z and

cn ≡ 1

n

n∑

j=1

zj

then cn → z.

Proof: Given ε > 0 as zj → z there exists an N > 0 such that |zj − z| < ε/2 when j ≥ N . Now, for
n > N write

|z − cn| =
∣∣∣∣∣z −

1

n

n∑

m=1

zm

∣∣∣∣∣ =
∣∣∣∣∣
1

n

n∑

m=1

(z − zm)

∣∣∣∣∣ ≤
1

n

n∑

m=1

|z − zm|

=
1

n

N∑

m=1

|z − zm|+
1

n

n∑

m=N+1

|z − zm|

≤ ε

2
+

1

n

N∑

m=1

|z − zm|

and so |z − cn| < ε when n > N and

n >
2

ε

N∑

m=1

|z − zm|.

End of Proof.

9.2. Complex Functions

A complex function is merely a rule for assigning certain complex numbers to other complex
numbers. The simplest (nonconstant) assignment is the identity function f(z) ≡ z. Perhaps the
next simplest function assigns to each number its square, i.e., f(z) ≡ z2. As we decomposed the
argument of f , namely z, into its real and imaginary parts, we shall also find it convenient to
partition the value of f , z2 in this case, into its real and imaginary parts. In general, we write

f(x+ iy) = u(x, y) + iv(x, y)

where u and v are both real–valued functions of two real variables. In the case that f(z) ≡ z2 we
find

u(x, y) = x2 − y2 and v(x, y) = 2xy.

With the tools of the previous section we may produce complex polynomials

f(z) = zm + cm−1z
m−1 + · · ·+ c1z + c0.
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We say that such an f is of degree m. We shall often find it convenient to represent polynomials
as the product of their factors, namely

f(z) = (z − λ1)
o1(z − λ2)

o2 · · · (z − λh)
oh. (9.4)

Each λj is a root of f of order oj. Here h is the number of distinct roots of f . In the previous
chapter we observed the appearance of ratios of polynomials, or so called rational functions, when
taking Laplace transforms, (8.18), and evaluating resolvents, (8.20). Suppose

r(z) =
f(z)

g(z)

is rational, that f is of degree at mostm−1 while g is of degreem withm distinct roots {λ1, . . . , λm}.
Our central task is to arrive at multiple, and complementary means of computing the rj in the
Partial Fraction Expansion

r(z) =

m∑

j=1

rj
z − λj

(9.5)

of r. Our first approach is a direct one, that you may recall from calculus. We uncover the rj by
first multiplying each side of (9.5) by (z − λj) and then setting z = λj. For example, if

1

z2 + 1
=

r1
z + i

+
r2
z − i

(9.6)

then multiplying each side by (z + i) produces

1

z − i
= r1 +

r2(z + i)

z − i
.

Now, in order to isolate r1 it is clear that we should set z = −i. So doing we find r1 = i/2. In order
to find r2 we multiply (9.6) by (z − i) and then set z = i. So doing we find r2 = −i/2, and so

1

z2 + 1
=

i/2

z + i
+

−i/2
z − i

. (9.7)

Returning to the general case, we encode the above in the simple formula

rj = (z − λj)r(z)
∣∣
z=λj

. (9.8)

You should be able to use this to confirm that

z

z2 + 1
=

1/2

z + i
+

1/2

z − i
. (9.9)

We now have the tools to compute the partial fraction expansion of the resolvent

(zI − B)−1 =
1

z2 + 1

(
z 1
−1 z

)
(9.10)

of the matrix, (8.45), associated with the vibration of a single mass, when k = m. In particular,
(9.7) and (9.9) allow us to write (9.10) as

(zI − B)−1 =
1

z + i

(
1/2 i/2
−i/2 1/2

)
+

1

z − i

(
1/2 −i/2
i/2 1/2

)
. (9.11)
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We recognize these coefficient matrices as precisely those that appear in (8.47).
In Chapter 8 we were confronted with the complex exponential when considering the Laplace

Transform. By analogy to the real exponential we define

exp(z) ≡
∞∑

n=0

zn

n!
(9.12)

and find that, for θ ∈ R,

exp(iθ) = 1 + iθ + (iθ)2/2 + (iθ)3/3! + (iθ)4/4! + · · ·
= (1− θ2/2 + θ4/4!− · · · ) + i(θ − θ3/3! + θ5/5!− · · · )
= cos θ + i sin θ.

(9.13)

This should hopefully clear up any mystery remaining from (8.48). With these observations, the
polar form is now simply z = |z| exp(iθ). One may just as easily verify that

cos θ =
exp(iθ) + exp(−iθ)

2
and sin θ =

exp(iθ)− exp(−iθ)
2i

.

These suggest the definitions, for complex z, of

cos z ≡ exp(iz) + exp(−iz)
2

and sin z ≡ exp(iz)− exp(−iz)
2i

. (9.14)

As in the real case the exponential enjoys the property that

exp(z1 + z2) = exp(z1) exp(z2)

and in particular
exp(x+ iy) = exp(x) exp(iy) = exp(x)(cos y + i sin y).

In order to visualize these complex functions we plot in Figure 9.2 their transformation of a regular
grid.
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Figure 9.2. The deformation of horizontal (black) segments and vertical (red) segments by exp,
sin and cos.

9.3. Complex Differentiation and the First Residue Theorem
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The complex function f is said to be differentiable at z0 if

lim
z→z0

f(z)− f(z0)

z − z0

exists, by which we mean that
f(zn)− f(z0)

zn − z0

converges to the same value for every sequence {zn} that converges to z0. In this case we naturally
call the limit f ′(z0).

Example: The derivative of z2 is 2z.

lim
z→z0

z2 − z20
z − z0

= lim
z→z0

(z − z0)(z + z0)

z − z0
= 2z0.

Example: The exponential is its own derivative.

lim
z→z0

exp(z)− exp(z0)

z − z0
= exp(z0) lim

z→z0

exp(z − z0)− 1

z − z0
= exp(z0) lim

z→z0

∞∑

n=0

(z − z0)
n

(n+ 1)!
= exp(z0).

Example: The real part of z is not a differentiable function of z.
We show that the limit depends on the angle of approach. First, when zn → z0 on a line parallel

to the real axis, e.g., zn = x0 + 1/n+ iy0, we find

lim
n→∞

x0 + 1/n− x0
x0 + 1/n+ iy0 − (x0 + iy0)

= 1,

while if zn → z0 in the imaginary direction, e.g., zn = x0 + i(y0 + 1/n), then

lim
n→∞

x0 − x0
x0 + i(y0 + 1/n)− (x0 + iy0)

= 0.

This last example suggests that when f is differentiable a simple relationship must bind its
partial derivatives in x and y.

Proposition 9.2. If f is differentiable at z0 then

f ′(z0) =
∂f

∂x
(z0) = −i∂f

∂y
(z0).

Proof: With z = x+ iy0,

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
= lim

x→x0

f(x+ iy0)− f(x0 + iy0)

x− x0
=
∂f

∂x
(z0).

Alternatively, when z = x0 + iy then

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
= lim

y→y0

f(x0 + iy)− f(x0 + iy0)

i(y − y0)
= −i∂f

∂y
(z0).

End of Proof.
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In terms of the real and imaginary parts of f this result brings the Cauchy–Riemann equa-
tions

∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
. (9.15)

Regarding the converse proposition we note that when f has continuous partial derivatives in a
region obeying the Cauchy–Riemann equations then f is in fact differentiable in that region.

We remark that with no more energy than that expended on their real cousins one may uncover
the rules for differentiating complex sums, products, quotients, and compositions.

As one important application of the derivative let us attempt to expand in partial fractions a
rational function whose denominator has a root with degree larger than one. As a warm-up let us
try to find r1,1 and r1,2 in the expansion

z + 2

(z + 1)2
=

r1,1
z + 1

+
r1,2

(z + 1)2
.

Arguing as above it seems wise to multiply through by (z + 1)2 and so arrive at

z + 2 = r1,1(z + 1) + r1,2. (9.16)

On setting z = −1 this gives r1,2 = 1. With r1,2 computed (9.16) takes the simple form z + 1 =
r1,1(z + 1) and so r1,1 = 1 as well. Hence

z + 2

(z + 1)2
=

1

z + 1
+

1

(z + 1)2
.

This latter step grows more cumbersome for roots of higher degree. Let us consider

(z + 2)2

(z + 1)3
=

r1,1
z + 1

+
r1,2

(z + 1)2
+

r1,3
(z + 1)3

.

The first step is still correct: multiply through by the factor at its highest degree, here 3. This
leaves us with

(z + 2)2 = r1,1(z + 1)2 + r1,2(z + 1) + r1,3. (9.17)

Setting z = −1 again produces the last coefficient, here r1,3 = 1. We are left however with one
equation in two unknowns. Well, not really one equation, for (9.17) is to hold for all z. We exploit
this by taking two derivatives, with respect to z, of (9.17). This produces

2(z + 2) = 2r1,1(z + 1) + r1,2 and 2 = 2r1,1.

The latter of course needs no comment. We derive r1,2 from the former by setting z = −1. We
generalize from this example and arrive at
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Proposition 9.3. The First Residue Theorem. The ratio, r = f/g, of two polynomials
where the order of f is less than that of g and g has h distinct roots {λ1, . . . , λh} of respective
degrees {o1, . . . , oh}, may be expanded in partial fractions

r(z) =
h∑

j=1

oj∑

k=1

rj,k
(z − λj)k

(9.18)

where, as above, the residue rj,k is computed by first clearing the fraction and then taking the
proper number of derivatives and finally clearing their powers. That is,

rj,k = lim
z→λj

1

(oj − k)!

doj−k

dzoj−k
{(z − λj)

ojr(z)}. (9.19)

This result permits us to compute the partial fraction of the resolvent, recall (8.67), of the
critically damped single mass, k = m = 1 and d = 2,

B =

(
0 1
−1 −2

)
and (sI − B)−1 =

1

(s+ 1)2

(
s + 2 1
−1 s

)
. (9.20)

The required expansions,
s

(s+ 1)2
=

1

s+ 1
− 1

(s+ 1)2

s+ 2

(s+ 1)2
=

1

s+ 1
+

1

(s+ 1)2

were constructed en route to Prop. 9.3. It follows that the resolvent in (9.20) may be written

(sI −B)−1 =
1

s+ 1

(
1 0
0 1

)
+

1

(s+ 1)2

(
1 1
−1 −1

)
. (9.21)

9.4. Möbius Transformations and Discrete Dynamics∗

We study a simple, and yet amazingly rich, class of rational functions, named after August
Möbius. A Möbius transformation is a function of the form

µ(z) =
az + b

cz + d
(9.22)

for fixed, complex numbers a, b, c and d. On differentiating µ with respect to z we find

µ′(z) =
ad− bc

(cz + d)2
, (9.23)

and so µ is nonconstant when ad−bc 6= 0. As multiplication of a, b, c and d by a common (nonzero)
factor leads to the same Möbius transformation we adopt the convention (for the remainder of this
section)

ad− bc = 1. (9.24)

This condition in fact allows us to extend µ to an invertible mapping of the extended complex plane,
C∞ ≡ C ∪∞. In particular, if c = 0 then set µ(∞) = ∞, while if c 6= 0 then (9.24) permits us to
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unambiguously express µ(−d/c):

µ(−d/c) = b− ad/c

d− cd/c
=
bc− ad

dc− cd
=

−1

0
≡ ∞.

Conversely,

µ(∞) =
a∞+ b

c∞+ d
=
a+ b/∞
c+ d/∞ =

a+ 0

c+ 0
= a/c.

We next observe that if µ1 and µ2 are Möbius Transformations then their composition

µ3(z) ≡ µ1(µ2(z)) =
a1µ2(z) + b1
c1µ2(z) + d1

=
b1 + a1(a2z + b2)/(c2z + d2)

d1 + c1(a2z + b2)/(c2z + d2)
=

(a1a2 + b1c2)z + (a1b2 + b1d2)

(c1a2 + c2d1)z + (c1b2 + d1d2)
.

is another Möbius Transformation. Moreover, the coefficients of the composition correspond pre-
cisely to the multiplication of the two associated 2-by-2 matrices,

(
a3 b3
c3 d3

)
=

(
a1a2 + b1c2 a1b2 + b1d2
c1a2 + c2d1 c1b2 + d1d2

)
=

(
a1 b1
c1 d1

)(
a2 b2
c2 d2

)
.

As the inverse of µ is that function for which µ−1(µ(z)) = z for all z it follows that the coefficients
of µ−1 are precisely the elements of

(
a b
c d

)−1

=

(
d −b
−c a

)
. (9.25)

In what follows we first show that each Möbius Transformation takes a circle or a line to a circle
or a line.

The general equation for the circle and the line in the (x, y) plane is

A(x2 + y2) + b1x+ b2y + C = 0 (9.26)

where each constant is real. In order to make this more suitable to our Möbius tranformations we
invert z = x+ iy and z = x− iy for

x = (z + z)/2 and y = i(z − z)/2.

These, together with x2 + y2 = zz and B ≡ (b1 − ib2)/2, permit us to express (9.26) as

Azz +Bz +Bz + C = 0. (9.27)

Now if we set w = µ(z) then, recalling (9.25),

z = µ−1(w) =
dw − b

a− cw
and z =

dw − b

a− cw
.

On using these expressions for z and z in (9.27), and clearing fractions, we find

A(dw − b)(dw − b) +B(dw − b)(a− cw) +B(dw − b)(a− cw) + C(a− cw)(a− cw) = 0.

Collecting terms brings
αww + βw + βw + γ = 0 (9.28)
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where

α = A|d|2 − 2ℜ(Bdc) + C|c|2, β = −Adb+Bda+ Bbc− Cca, γ = A|b|2 − 2ℜ(Bba) + C|a|2.

As w = µ(z) obeys (9.28) with real α and γ we have proven

Proposition 9.4. Each Möbius transformation maps circles and lines onto circles and lines.

Our interest here is in classifying Möbius Transformations via the nature of their orbits. Namely
by the properties of

zn = µ(zn−1) (9.29)

as n → ∞. As in the continuous case we begin with the steady–state solutions. In this case, if
zn → z∗ then (9.29) implies that

z∗ = µ(z∗).

We call such a z∗ a Fixed Point of µ.
As µ(∞) = a/c we note that µ fixes ∞ iff c = 0. When c = 0 we note that d = 1/a and that

µ(z) = z requires az + b = z/a. This equation forks two ways; if a = ±1 then z = ∞ is the only
fixed point, while if a 6= ±1 then z = ab/(1− a2) is the second fixed point of µ.

In the case that c 6= 0, the fixed point condition µ(z) = z is simply the quadratic equation
cz2 + (d− a)z − b = 0. Its roots,

z± =
a− d±

√
(trM)2 − 4

2c
, (9.30)

where trM = a + d and M is the 2-by-2 matrix associated with µ, are distinct when (trM)2 6= 4.
These observations in fact establish

Proposition 9.5. Suppose µ is a Möbius Transformation with matrix representation M . If
(trM)2 6= 4 then µ has two fixed points. If (trM)2 = 4 and µ is not the identity then µ has one
fixed point.

As in the case of continuous dynamics we expect these fixed points (steady–states) to be either
attracting or repelling or the center of oscillations.

To begin, for c 6= 0 and (trM)2 6= 4, µ has two distinct finite roots, z±, per (9.30). These roots
are mapped to 0 and ∞ by the explicit Möbius Transformation

σ(z) ≡ z − z+
z − z−

. (9.31)

As the inverse of σ therefore maps 0 and ∞ to z± it follows that

ν(z) ≡ σ(µ(σ−1(z))) (9.32)

fixes 0 and ∞ and is therefore of a very simple form. To see this we note that its associated matrix

N = SMS−1 =

(
1 −z+
1 −z−

)(
a b
c d

)
1

z+ − z−

(
−z− z+
−1 1

)
=

(
λ 0
0 1/λ

)
(9.33)
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is diagonal, where

λ =
trM +

√
(trM)2 − 4

2
. (9.34)

It follows that ν is merely multiplication

ν(z) =
λz + 0

0 + 1/λ
= λ2z. (9.35)

As such its orbits, zn = ν(zn−1) = λ2nz0, grow, decay or oscillate as |λ| is respectively greater than,
less than, or equal to one. To see how this facilitates study of the orbits of µ we simply invert (9.32)
to go from

zn = µ(zn−1) to zn = σ−1(ν(σ(zn−1))) = σ−1(λ2nσ(z0)). (9.36)

Hence, the orbits of µ are determined solely by powers of λ2.
Although the situation when c = 0 and a 6= ±1 is really just a special case of the analysis above,

it is worth spelling it out. In this case the fixed points are z+ = ab/(1− a2) and z− = ∞ and so we
replace the fixed point shifter, (9.31), with the even simpler

σ(z) ≡ z − z+.

It follows, as above, that ν(z) ≡ σ(µ(σ−1(z))) fixes 0 and ∞ and is therefore merely multiplication.
In particular, as its associated matrix

N = SMS−1 =

(
1 −z+
0 1

)(
a b
0 1/a

)(
1 z+
0 1

)
=

(
a 0
0 1/a

)
,

it follows that ν(z) = a2z and hence the dynamics of µ are completely determined by a.
We consider then its polar expression λ2 = r exp(iθ) and consider the three distinct cases.

The Möbius Transformation µ is called hyperbolic when λ2 = r > 0. It follows that if z0 6= z± and
r > 1 then zn → σ−1(∞) = z− and hence z− is attracting while z+ is repelling. Similarly, if r < 1
then zn → σ−1(0) = z+ and so now z+ is attracting while z− is repelling. Given (9.34) we should
be able to state necessary and sufficient conditions on trM for λ2 = r. From (9.33) it follows that
trM = trN = λ+ 1/λ. Squaring this expression brings

(trM)2 = 2 + λ2 + 1/λ2. (9.37)

Now, if λ2 = r > 0 then (tr,M)2 is real and bounded below by 4 (for r + 1/r ≥ 2 when r > 0).
Hence, if µ is hyperbolic then trM ∈ R and |trM | > 2. We illustrate this case by plotting orbits of

µH(z) =
z + 1

z + 2
(9.38)

in Figure 9.3(A).

The Möbius Transformation µ is called elliptic when λ2 = exp(iθ). In this case we note that
λ2nσ(z0) = exp(2niθ)σ(z0) does not converge but that each iterate lies on the circle of radius
|σ(z0)|. As σ−1 takes circles to circles it follows that each zn lies on a circle (centered at z+ or z−).
If µ is elliptic then (9.37) requires that

(trM)2 = 2 + exp(iθ) + exp(−iθ) = 2 + 2 cos(θ), (9.39)
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from which we deduce that trM ∈ R and |trM | < 2. We have illustrated this case by plotting
orbits of

µE(z) =
z/2− 1/2

z + 1
(9.40)

in Figure 9.3(C).

The Möbius Transformation µ is called loxodromic when λ2 = r exp(iθ) where r > 0, r 6= 1 and
θ 6= 2kπ. In this case (9.37) reads

(trM)2 = 2 + (r + 1/r) cos(θ) + i(r − 1/r) sin(θ).

The right hand side is not real unless θ = π. In this case we find (trM)2 = 2 − (r + 1/r) < 0 (as
r + 1/r > 2). Hence, if µ is loxodromic then trM 6∈ R. We have illustrated this case by plotting
orbits of

µL(z) =
(1− 5i)z + 1

z + 1− 5i
(9.41)

in Figure 9.3(C).

Finally, if trM = ± then, by (9.30), µ has the single fixed point (a− d)/(2c). We use

σ(z) ≡ 1/c

z − (a− d)/(2c)

to send it to ∞ so that ν(z) ≡ σ(µ(σ−1(z))) fixes ∞. The associated matrix

N = SMS−1 =

(
0 1/c
1 (d− a)/(2c)

)(
a b
c d

)(
(a− d)/2 1

c 0

)
=

(
1 1
0 1

)
,

is what we called a Jordan Block in §4.4. It follows that ν(z) = z + 1 and that the dynamics of
µ come down to

zn = µ(zn−1) = σ−1(ν(σ(zn−1))) = σ−1(σ(z0) + n) → σ−1(∞) = (a− d)/(2c).

This shows that the lone fixed point is attracting. Möbius transformations with trM = ±2 are
deemed parabolic. We have illustrated this case by plotting orbits of

µP (z) =
z

z + 1
(9.42)

in Figure 9.3(D).
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Figure 9.3. Orbits of the four types of Möbius Transformations.

To summarize, we have established necessary conditions on the trace ofM , the matrix associated
with a Möbius transformation, µ, for µ to be of 1 of 4 types. As these conditions are mutually exclu-
sive they must in fact be sufficient. As a result, we have established the fundamental classification
of Möbius transformations.

Proposition 9.6. The Möbius transformation µ is
Hyperbolic iff trM ∈ R and |trM | > 2,
Elliptic iff trM ∈ R and |trM | < 2,
Parabolic iff trM ± 2,
Loxodromic iff trM 6∈ R.

We will return to this classification in our work in Chapters 14 and 15 on matrix groups and
representation theory. For now, we wish to emphasize that we have also, en route, classified 2-
by-2 matrices, with determinant equal to one. To make this precise we need to recall that when
N = SMS−1 we call S a similarity transform and say that N and M are similar.

To summarize, we have shown that if (trM)2 = 4 then M is similar to

(
1 1
0 1

)
else M is similar to

(
λ 0
0 1/λ

)
. (9.43)

This condition (trM)2 = 4 can be seen as a degeneracy condition. Our main spectral result will say
that each nondegenerate matrix is similar to a diagonal matrix, and that each degenerate matrix is
similar to a diagonal matrix plus a nilpotent matrix.

9.5. Fourier Series and Transforms∗

The complex exponential is fundamental to the two central “transforms” of modern science,
those named after Fourier and Laplace. We pause here to develop the key properties of Fourier
Series and Transforms.

We observed in §8.4 that a mechanical system with 2 degrees of freedom vibrates at 2 charac-
teristic frequencies. One of the most common applications of Fourier tools is to the problem of
spectral analysis, i.e., the determination of the spectral or frequency components of a signal.

Most everything follows from the fact that exp(2πimt) is “orthogonal” to exp(2πint) in the sense
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that, for integers m and n,

∫ 1

0

exp(2πint) exp(−2πimt) dt =

∫ 1

0

exp(2πi(n−m)t) dt =

{
0 if m 6= n,

1 if m = n.
. (9.44)

The key idea is now to use these orthonormal exponentials as a basis for a class of functions defined
on 0 ≤ t ≤ 1. More precisely, given a function f we develop it in a Fourier Series

f(t) =
∞∑

n=−∞
f̂(n) exp(2πint). (9.45)

To determine the Fourier coefficients, f̂(m), multiply each side of (9.45) by exp(−2πimt) then
integrate and invoke (9.44):

f̂(m) =

∫ 1

0

f(t) exp(−2πimt) dt. (9.46)

For example, if

f(t) = t then f̂(0) =
1

2
and f̂(n) =

i

2πn
, |n| > 0, (9.47)

while if

f(t) = t(1− t) then f̂(0) =
1

6
and f̂(n) =

−1

2(nπ)2
, |n| > 0. (9.48)

We speak of f̂(m) exp(2πimt) as the projection of f onto exp(2πimt) and so interpret f̂(m) as the
“amount” of f at frequency m. Regarding the sense of “negative frequency” we note that if f is

real then f̂(−n) = f̂(n) and so (9.45) takes the form

f(t) = f̂0 + 2

∞∑

n=1

ℜ{f̂(n) exp(−2πint)}. (9.49)

This in turn suggests that we write

f̂(m) =

∫ 1

0

f(t) exp(−2πimt) dt =

∫ 1

0

f(t)(cos(2πmt)−i sin(2πmt)) dt = 2(f̂c(m)−if̂s(m)) (9.50)

where

f̂c(m) =
1

2

∫ 1

0

f(t) cos(2πmt) dt and f̂s(m) =
1

2

∫ 1

0

f(t) sin(2πmt) dt, m = 1, 2, . . .

In which case (9.49) becomes

f(t) = f̂0 +

∞∑

n=1

f̂c(n) cos(2πnt) + f̂s(n) sin(2πnt). (9.51)

Returning to our two examples, we find

t =
1

2
−

∞∑

n=1

sin(2πnt)

nπ
and (1− t)t =

1

6
−

∞∑

n=1

cos(2πnt)

n2π2
. (9.52)
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It is very instructive to visually interrogate the convergence of these sums by graphing the partial
sums

SN(t) ≡ f̂0 +
N∑

n=1

f̂c(n) cos(2πnt) + f̂s(n) sin(2πnt) (9.53)

for increasing values of N .
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Figure 9.4 (A) The exact f(t) = t and two of its low frequency (9.53) Fourier approximants.
(B) The exact f(t) = (1− t)t and two of its low frequency (9.53) Fourier approximants. (fftexa.m)

In practice we are most often confronted not with an analytical expression of a function on the
unit interval but rather with N samples over an interval of duration T :

fN(m) ≡ f(mdt), dt ≡ T/N, m = 0, . . . , N − 1.

We now attempt to develop fN in a discrete Fourier series of the form

fN (m) =
1

N

N−1∑

n=0

f̂N(n) exp(2πinm/N). (9.54)

On defining
wN ≡ exp(2πi/N)

we note that Eq. (9.54) takes the very simple form,

1

N

N−1∑

n=0

wmnN f̂N (n) = fN(m). (9.55)

This in turn may be written as the matrix equation

1

N
FN f̂N = fN (9.56)

where, noting that wNN = 1,

FN =




1 1 1 · 1
1 wN w2

N · wN−1
N

1 w2
N w4

N · w
2(N−1)
N

· · · · ·
1 wN−1

N w
2(N−1)
N · w

(N−1)2

N



. (9.57)
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We now exploit this very special structure of FN and arrive at an elegant solution to Eq. (9.56). To
begin we examine the jk element of F ∗

NFN , i.e., row j of F ∗
N (the conjugate transpose of FN) times

column k of FN ,

(F ∗
NFN )jk = 1 · 1 + wj−1

N wk−1
N + w

2(j−1)
N w

2(k−1)
N + · · ·+ w

(N−1)(j−1)
N w

(N−1)(k−1)
N .

If j = k then w
m(j−1)
N w

m(k−1)
N = exp(−2πim(j−1)) exp(2πim(j−1)) = 1 for eachm and (F ∗

NFN )jj =

N . If j 6= k we let z = w
(j−1)
N w

(k−1)
N and find the finite geometric series

(F ∗
NFN )jk = 1 + z + z2 + · · ·+ zN−1 =

1− zN

1− z
= 0. (9.58)

The middle equality is justified in Exer. 9.3 and the final equality stems from zN = 1. Gathering
the above computations, we have shown that

F ∗
NFN = NI and so F−1

N =
1

N
F ∗
N and f̂N = F ∗

NfN (9.59)

is the solution to Eq. (9.56). We speak of f̂N as the Discrete Fourier Transform (DFT) of fN
and note the latter equation in (9.59) may be expressed in component form as

f̂N(m) =

N−1∑

n=0

wmnN fN(n) =

N−1∑

n=0

exp(−2πi(m/T )(ndt))f(ndt). (9.60)

As such we interpret m/T as the associated discrete frequencies. It also follows from Eq. (9.60)
that if fN is real then

f̂N(N/2 + j) = f̂N (N/2− j), j = 1, 2, . . . , N/2− 1, (9.61)

and as such only the first 1 +N/2 frequencies

ωm = m/T, m = 0, . . . , N/2,

carry information. This observation in fact leads to a fast method, known as the fft, for implement-
ing the Discrete Fourier Transform. The basic idea is that a DFT of order N can be implemented
by 2 DFTs of order N/2.

We illustrate it, in Figure 9.5, by “recovering” the driving frequency and two frequencies of
vibration of the 2–mass system Figure 8.6(A) from knowledge of the displacement of the first mass.
In particular, with a driving frequency of a/2π at the first mass we use chain2.m to compute the
first displacement up to time T = 40 at N = 400000 points. The code

fx1 = fft(x1);

omega = (0:N-1)/T;

plot(omega,abs(fx1)/max(abs(fx1)),’k’)

then peaks at the frequencies present in x1.
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Figure 9.5 (A) Detecting the frequencies present in the vibration of a two mass system when
the first mass is driven at frequency a/(2π) where a = 3 and a = 4. The two curves coincide
at the system’s natural, or resonant, frequencies 1/(2π) and

√
3/(2π), while the black curve also

peaks at the driving frequency 3/(2π) and the red curve also peaks at the driving frequency 4/(2π).
(chainfreq.m) (B) The power spectra of xj+1 − a1xj = εj with a1 = ±0.95.

9.6. The Power Spectra of Stationary Processes∗

Given two discrete stationary processes, x and y, we search for the “filter” a for which the Fourier
Transform of the autocovariance of y − a ⋆ x is minimal at every frequency.

We consider a Stationary Process, x, of §6.8 and define its Power Spectrum to be the Fourier
Transform of its autocovariance:

ĉxx(ω) ≡
∞∑

k=−∞
cxx(k) exp(−2πikdtω) cxx(k) ≡ mean(xjxj+k) (9.62)

where dt is the time step between samples of x.
If x is the AR(1) process of (6.65) and dt = 1 s then, recalling (6.66)–(6.67),

ĉxx(ω) = c0 + c0

∞∑

k=1

ak1{exp(2πikω) + exp(−2πikω)}

= c0 + c0
a1 exp(2πiω)

1− a1 exp(2πiω)
+ c0

a1 exp(−2πiω)

1− a1 exp(−2πiω)

= c0
1− a21

1− 2a1 cos(2πω) + a21
=

σ2

1− 2a1 cos(2πω) + a21

(9.63)

We illustrate this in Figure 9.5(B).
For our next class we consider moving averages

xn =

∞∑

j=−∞
ajξn+j, mean(ξmξn) = δmn. (9.64)

We argue that the Fourier Transform of its autocovariance

cxx(n) ≡ mean(xm+nxm) =

∞∑

j=−∞
aj−naj
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can be represented in terms of the Fourier Transform of a:

â(ω) ≡
∞∑

k=−∞
ak exp(2πikω),

for

ak =

∫ 1/2

−1/2

â(ω) exp(−2πikω) dω

and so
∫ 1/2

−1/2

ĉxx(ω) exp(2πinω) dω =

∞∑

j=−∞
aj−naj =

∞∑

j=−∞
aj

∫ 1/2

−1/2

â(ω) exp(2πi(n− j)ω) dω

=

∫ 1/2

−1/2

â(ω) exp(2πinω)
∞∑

j=−∞
aj exp(−2πijω) dω

=

∫ 1/2

−1/2

â(ω) exp(2πinω)â(ω) dω =

∫ 1/2

−1/2

|â(ω)|2 exp(2πinω) dω

and so if x is a moving average of the form (9.64) then

ĉxx(ω) = |â(ω)|2.
More generally, we consider the discrete convolution of two time series,

(a ⋆ x)j ≡
∑

p

apxj−p (9.65)

and establish

Proposition 9.7. If y = a ⋆ x then
(i) ŷ(ω) = â(ω)x̂(ω).
(ii) If x is stationary then cxy = a ⋆ cxx and cyy = (E∞a) ⋆ (a ⋆ cxx).
(iii) If x is stationary then ĉxy(ω) = â(ω)ĉxx(ω) and ĉyy(ω) = |â(ω)|2ĉxx(ω).

Proof: Regarding (i) we find

ŷ(ω) =
∑

k

(a ⋆ x)k exp(−2πikdtω)

=
∑

k

∑

p

apxk−p exp(−2πi(k − p+ p)dtω)

=
∑

p

ap exp(−2πipdtω)
∑

k

xk−p exp(−2πi(k − p)dtω) = â(ω)x̂(ω).

Regarding (ii) we find

cxy(k) = mean(xj(a ⋆ x)j+k) = mean(xj
∑

p

apxj+k−p)

=
∑

p

apmean(xjxj+k−p) =
∑

p

apcxx(k − p) = (a ⋆ cxx)k,
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and
cyy(k) = mean((a ⋆ x)j(a ⋆ x)j+k) = mean(

∑

p

apxj−p
∑

q

aqxj+k−q)

=
∑

p

apmean(xj−p
∑

q

aqxj+k−q) =
∑

p

ap
∑

q

aqmean(xj−pxj+k−q)

=
∑

p

ap
∑

q

aqcxx(k + p− q) =
∑

p

ap(a ⋆ cxx)k+p = ((E∞a) ⋆ (a ⋆ cxx))k.

Finally (iii) follows from (i) and (ii) on noting that Ê∞a = â. End of Proof.

We apply this to the AR(1) process, xj − a1xj−1 = εj, so â(ω) = 1− a1 exp(−2πiω) and so

ĉεε(ω) = (1− 2a1 cos(2πω) + a21)ĉxx(ω).

As ĉεε(ω) = σ2 we have arrived at (9.63) by different means.
We have seen three examples of the ĉxx(ω) ≥ 0. We prove

Proposition 9.8. If
∞∑

k=−∞
|cxx(k)| <∞

then

ĉxx(ω) = lim
N→∞

1

N
mean

∣∣∣∣∣

N−1∑

n=0

xn exp(−2nπiω)

∣∣∣∣∣

2

.

Proof: We define

x̂N(ω) ≡
N−1∑

n=0

xn exp(−2nπiω)

and note that

mean|x̂N(ω)|2 = mean

(
N−1∑

n=0

xn exp(−2nπiω)

N−1∑

m=0

xm exp(2mπiω)

)

=

N−1∑

n=0

N−1∑

m=0

cxx(m− n) exp(2(m− n)πiω)

=
N−1∑

n=1−N
(N − |n|)cxx(n) exp(−2nπiω)

where the final equality follows from the lovely identity (1.43). It follows that

lim
N→∞

1

N
mean|x̂N(ω)|2 = lim

N→∞

N−1∑

n=1−N
(1− |n|/N)cxx(n) exp(−2nπiω)

=

∞∑

n=−∞
cxx(n) exp(−2nπiω)
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thanks to Exer. 9.4. End of Proof.

We next define the coherence of two processes to be the normalized cross–spectrum

Rxy(ω) ≡
ĉxy(ω)√

ĉxx(ω)ĉyy(ω)
(9.66)

and note that Prop. 9.8 asserts that if y = a ⋆ x then Rxy(ω) = â(ω)/|â(ω)|. As a simple example,
if yk = xk+d is a delayed copy of x then y = a ⋆ x with aj = 0 save a−d = 1 in which case
Rxy(ω) = â(ω) = exp(2dπiω).

Given two processes, x and y, we now search for the filter a for which y is closest to a ⋆ x in the
sense that the error

ε = y − (a ⋆ x) (9.67)

has minimal power spectrum at each frequency. Arguing as in the proof of Prop. 9.7, the autoco-
variance of each side of (9.67) spells

cεε = cyy − (E∞a) ⋆ cxy − a ⋆ cyx + (E∞a) ⋆ (a ⋆ cxx).

and so the associated error Spectrum is

ĉεε(ω) = ĉyy(ω)− âĉxy − â(ω)ĉxy(ω) + |â(ω)|2ĉxx(ω)
= ĉxx|â− ĉxy/ĉxx|2 + ĉyy(1− |Rxy|2).

(9.68)

To minimize this we choose

â(ω) = ĉxy(ω)/ĉxx(ω). (9.69)

In which case ĉεε(ω) = ĉyy(ω)(1− |Rxy(ω)|2). As the a that results from (9.69) requires knowledge
of covariances at an infinite number of lags it is known as the filter with Infinite Impulse Response,
by contrast with the Finite Impulse Response of Exer. 6.25. For real-time filters the obstacle is not
access to the infinite past but rather access to the future. To design best filters that require no
knowledge of the future will require deeper knowledge of residues.

9.7. Notes and Exercises

For a more thorough introduction to Complex Variables see Levinson and Redheffer (1970). Our
presentation of Möbius transformations follows Ford (1957). For a more spectacular view consult
?ndra. For a more thorough study of the Fourier Analysis of Time Series see Brillinger (2001).

1. Please show that | exp(x+ iy)| = exp(x).

2. Show that if |z| = 1 is not a root of unity then its powers are dense on the unit circle.

3. Suppose z 6= 1 and define the n-term geometric series

σ ≡
n−1∑

k=0

zk,

and show, by brute force, that σ − zσ = 1− zn. Derive (9.58) from this result.
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4. Deduce from Prop. 9.1 that if

Z = lim
N→∞

N∑

n=1

zn then Z = lim
N→∞

N∑

n=1

(1− n/N)zn.

5. Find the real and imaginary parts of cos z and sin z. Express your answers in terms of regular
and hyperbolic trigonometric functions.

6. Show that cos2 z + sin2 z = 1.

7. The beautiful cos(θ) = (exp(iθ) + exp(−iθ))/2 plays a fundamental role in analyzing the state
of the random walker. This walker begins, at time t = 0, at position x = 0 and steps to a
neighboring integer, ±1, at time t = 1, with equal probability, 1/2. From that position he
again steps to a neighboring integer with equal probability, 1/2, and so on. We denote the
probability of being at position n at time t by P (x(t) = n).

(a) Show that P (x(1) = 1) = 1/2 and that P (x(1) = 1) is the coefficient of exp(iθ) in cos(θ).

(b) Show that P (x(2) = 0) = 1/2, P (x(2) = 2) = 1/4 and P (x(2) = −2) = 1/4 and argue that
P (x(2) = n) is the coefficient of exp(inθ) in cos2(θ).

(c) Generalize your argument in (b) to conclude that P (x(t) = n) is the coefficient of exp(inθ)
in cost(θ).

(d) Use (c) to deduce that

P (x(t) = n) =
1

2π

∫ π

−π
cost(θ) exp(−inθ) dθ.

(e) Lets next define F (t) to be the probability that t is the first time that x(t) = 0. Please
confirm that

P (x(t) = 0) =
t−1∑

j=0

P (x(j) = 0)F (t− j).

Now sum this from t = 1 to t = ∞ and conclude that

P − 1 = PF where P =
∞∑

t=1

P (x(t) = 0) and F =
∞∑

t=1

F (t).

Explain why F is the probability that the walker ever returns to the origin.

(f) Use (e) to show that F = 1− 1/P and (d) to show that

P =

∞∑

t=1

P (x(t) = 0) =
1

2π

∫ π

−π

1

1− cos(θ)
dθ. (9.70)

(g) To evaluate this integral please confirm that cos(θ) lies above the chord 1 − 2θ/π when
0 ≤ θ ≤ π/2 to conclude that 1− cos(θ) ≤ (2/π)θ there. Conclude from this that P = ∞ and
that the walker is therefore assured, by (f), of returning home.

8. Given a complex matrix Z define its “real part” to be X ≡ (Z + Z∗)/2 and its “imaginary
part” to be Y = (Z − Z∗)/(2i). Recall that Z∗ denotes its conjugate transpose, (9.3) Show
that Z = X + iY and X∗ = X and Y ∗ = Y .
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9. Suppose Z ∈ Cn×n. Show that if tr(ZH) = 0 for every H ∈ Cn×n for which H = H∗ then
Z = 0. Hint: use the previous exercise to write Z∗ = X− iY and note that ZZ∗ = ZX− iZY .

10. Use (9.59) to derive Parseval’s Theorem

‖f̂N‖2 = N‖fN‖2. (9.71)

11. Suppose N is even and use (9.60) and w2
N = wN/2 to arrive at

f̂N (m) =

N/2−1∑

n=0

wmnN/2fN(2n) + wmN

N/2−1∑

n=0

wmnN/2fN (2n+ 1), m = 0, 1, . . . , N − 1.

From here use w
m+N/2
N = −wmN to establish

f̂N(m) = (FN/2fNe)(m) + wmN (FN/2fNo)(m)

f̂N(m+N/2) = (FN/2fNe)(m)− wmN(FN/2fNo)(m)
m = 0, 1, . . . , N/2− 1,

where fNe denotes the even elements and fNo denotes the odd elements of fN . Compute the
savings.

12. Lets build a multivariate generalization of Prop. 9.1. For Xj ∈ Rn and Ap ∈ Rn×n define

Yj = (A ⋆ X)j ≡
∑

p

ApXj−p (9.72)

and establish

(i) Ŷ (ω) = Â(ω)X̂(ω).

(ii) If X is stationary then CY Y = A ⋆ E∞(CXX ⋆ A
T ) and ĈY Y (ω) = Â(ω)ĈXX(ω)Â

∗(ω).

13. Verify that sin z and cos z satisfy the Cauchy-Riemann equations (9.15) and use Prop. 9.2.1 to
evaluate their derivatives.

14. Use the Cauchy–Riemann equations to conclude that the real and imaginary parts of a differ-
entiable function are each harmonic. That is, if f(x, y) = u(x, y) + iv(x, y) then

∂2u(x, y)

∂x2
+
∂2u(x, y)

∂y2
= 0 and

∂2v(x, y)

∂x2
+
∂2v(x, y)

∂y2
= 0

for the points x + iy where f is smooth. Confirm that the real and imaginary parts of sin z
and cos z are indeed harmonic. (perhaps reverse these subparts)

15. We call Ψ(x, t) = exp(2πi(px − Et)/h) a wave in space x, and time t. We accordingly speak
of h/p as its wavelength and E/h as its frequency. In Figure 9.6 we have plotted its real part
over a region of space-time for particular values of p, E and h.
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Figure 9.6 A plot of ℜΨ with p = 1, E = 2 and h = 10. psiwave.m

Show that Ψ obeys Schrödinger’s equation

− h2

8π2m

∂2Ψ(x, t)

∂x2
+ VΨ(x, t) =

ih

2π

∂Ψ(x, t)

∂t
(9.73)

when E = V + p2/(2m). In this interpretation, h is Planck’s constant, m is mass, p is
momentum, V is potential energy and E is total (kinetic plus potential) energy.

16. Submit a Matlab diary documenting your calculation, via the symbolic toolbox, of the
partial fraction expansion of the resolvent of

B =




2 −1 0
−1 2 −1
0 −1 2


 .

You should achieve

(sI − B)−1 =
1

s− (2 +
√
2)

1

4




1 −
√
2 1

−
√
2 2 −

√
2

1 −
√
2 1




+
1

s− 2

1

2




1 0 −1
0 0 0
−1 0 1


+

1

s− (2−
√
2)

1

4




1
√
2 1√

2 2
√
2

1
√
2 1


 .

17. If A 6= 0 and |B|2 > AC show that (9.27) is equivalent to |z − z0| = r. Find z0 and show that
r > 0. Us this to show that µ(z) = 1/(z + 2) takes the circle centered at zero of radius one to
the circle centered at 2/3 of radius 1/3.

18. Consider a Möbius transformation, µ, and its associated matrix M . Show that z = [z1; z2] is
an eigenvector of M iff z1/z2 is a fixed point of µ.
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10. Complex Integration

Our goal here is to develop the main results of complex integration theory and to apply these to
partial fraction expansion of the resolvent of a matrix and to the Inverse Laplace Transform of a
rational function. With these tools and applications we will have placed the dynamics work in §8.2
on a solid foundation.

These tools will also permit us to solve the challenging Causal Wiener Filter problem set in the
previous chapter, and to develop the tools needed for a careful study of the eigenvalue perturbation
problem.

10.1. Cauchy’s Theorem

We will be integrating complex functions over complex curves. Such a curve is parametrized
by one complex valued or, equivalently, two real valued, function(s) of a real parameter (typically
denoted by t). More precisely,

C ≡ {z(t) = x(t) + iy(t) : t1 ≤ t ≤ t2}.

For example, if x(t) = y(t) = t from t1 = 0 to t2 = 1, then C is the line segment joining 0 + i0 to
1 + i. We now define

∫

C

f(z) dz ≡
∫ t2

t1

f(z(t))z′(t) dt. (10.1)

For example, if C = {t+ it : 0 ≤ t ≤ 1} as above and f(z) = z then

∫

C

z dz =

∫ 1

0

(t+ it)(1 + i) dt =

∫ 1

0

{(t− t) + i2t} dt = i,

while if C is the unit circle {exp(it) : 0 ≤ t ≤ 2π} then

∫

C

z dz =

∫ 2π

0

exp(it)i exp(it) dt = i

∫ 2π

0

exp(i2t) dt = i

∫ 2π

0

{cos(2t) + i sin(2t)} dt = 0.

Remaining with the unit circle but now integrating f(z) = 1/z we find

∫

C

z−1 dz =

∫ 2π

0

exp(−it)i exp(it) dt = 2πi.

We generalize this calculation to arbitrary (integer) powers over arbitrary circles. More precisely,
for integer m and fixed complex a we integrate (z − a)m over

C(a, ρ) ≡ {a + ρ exp(it) : 0 ≤ t ≤ 2π}, (10.2)
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the circle of radius ρ centered at a. We find

∫

C(a,ρ)

(z − a)m dz =

∫ 2π

0

(a+ ρ exp(it)− a)mρi exp(it) dt

= iρm+1

∫ 2π

0

exp(i(m+ 1)t) dt

= iρm+1

∫ 2π

0

{cos((m+ 1)t) + i sin((m+ 1)t)} dt

=

{
2πi if m = −1,

0 otherwise,

(10.3)

regardless of the size of ρ!
When integrating more general functions it is often convenient to express the integral in terms

of its real and imaginary parts. More precisely
∫

C

f(z) dz =

∫

C

f(x+ iy)(dx+ idy) =

∫

C

f(x+ iy) dx+ i

∫

C

f(x+ iy) dy. (10.4)

This representation is specially suited to one of the cornerstones of multivariable calculus. In
particular, Green’s Theorem permits us to express our contour integral, Eq. (10.4), as an especially
convenient integral over space.

Proposition 10.1. Green’s Theorem. If C is a closed curve and M and N are continuously
differentiable real–valued functions on Cin, the region enclosed by C, then

∫

C

M(x, y) dx+

∫

C

N(x, y) dy =

∫∫

Cin

(
∂N

∂x
− ∂M

∂y

)
dxdy

Proof: We suppose that C encloses the lens shaped region like that of Figure 10.1 with the dual
description

Cin = {(x, y) : y1 ≤ y ≤ y2, xa(y) ≤ x ≤ xb(y)}
= {(x, y) : x1 ≤ x ≤ x2, ya(x) ≤ y ≤ yb(x)}.

y
2

y
1

y

x
2

x
1

x

R
1

R
2

Figure 10.1. (A) A lens shaped region. (B) A union of lenses.
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The advantage of such a region is that it permits us to express integrals over (x, y) as sequential, or
iterated, integrals over x and y individually. When our integrand is a partial derivative with respect
to x or y we may then invoke the fundamental theorem of calculus, relegating the final integral to
the boundary. More precisely

∫∫

Cin

∂N(x, y)

∂x
dxdy =

∫ y2

y1

∫ xb(y)

xa(y)

∂N(x, y)

∂x
dxdy

=

∫ y2

y1

(N(xb(y), y)−N(xa(y), y)) dy =

∫

C

N(x, y) dy

where the second equality is a direct application of the fundamental theorem of calculus. To see
the third equality use Figure 10.1 as a guide and note that integrating up along xb agrees with the
orientation of C while integrating up along xa is counter to C’s orientation, but as this is prefaced
with a minus sign we arrive at integration of N round the full contour. Similarly

∫∫

Cin

∂M(x, y)

∂y
dxdy =

∫ x2

x1

∫ yb(x)

ya(x)

∂M(x, y)

∂y
dydx

=

∫ x2

x1

(M(x, yb(x))−M(x, ya(y))) dy = −
∫

C

M(x, y) dx

Regarding the final equality, note that integrating rightward along yb is counter to C’s orientation
while integrating rightward along ya conforms to C’s orientation.

To complete the proof we return to a general smooth closed curve C and express Cin as a union
of lens shaped regions. Take for example the region of Figure 10.1(B) where Cin = R1 ∪R2. Now

∫∫

Cin

∂N(x, y)

∂x
dxdy =

∫∫

R1

∂N(x, y)

∂x
dxdy +

∫∫

R2

∂N(x, y)

∂x
dxdy

=

∫

C1

N(x, y) dy +

∫

C2

N(x, y) dy

(10.5)

where Cj is the counterclockwise contour enclosing Rj . As C1 and C2 have opposite orientations
along their common (dashed) segment these contributions to Eq. (10.5) cancel and we find

∫∫

Cin

∂N(x, y)

∂x
dxdy =

∫

C

N(x, y) dy.

The same argument applies to the M integral. It also applies to all finite unions of lens shaped
regions. End of Proof.

Applying this proposition to Eq. (10.4), we find, so long as C is closed, that

∫

C

f(z) dz = −
∫∫

Cin

(
∂v

∂x
+
∂u

∂y

)
dxdy + i

∫∫

Cin

(
∂u

∂x
− ∂v

∂y

)
dxdy.

At first glance it appears that Green’s Theorem only serves to muddy the waters. Recalling the
Cauchy–Riemann equations however we find that each of these double integrals is in fact identically
zero! In brief, we have proven
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Proposition 10.2. Cauchy’s Theorem. If f is differentiable on and in the closed curve C then
∫

C

f(z) dz = 0.

Strictly speaking, in order to invoke Green’s Theorem we require not only that f be differentiable
but that its derivative in fact be continuous. This however is simply a limitation of our simple mode
of proof, Cauchy’s Theorem is true as stated.

This theorem, together with (10.3), permits us to integrate every proper rational function. More
precisely, if r = f/g where f is a polynomial of degree at most m − 1 and g is an mth degree
polynomial with h distinct zeros at {λj}hj=1 with respective multiplicities of {pj}hj=1 we found that

r(z) =
h∑

j=1

pj∑

k=1

rj,k
(z − λj)k

. (10.6)

Observe now that if we choose the radius ρj so small that λj is the only zero of g encircled by
Cj ≡ C(λj, ρj) then by Cauchy’s Theorem

∫

Cj

r(z) dz =

pj∑

k=1

rj,k

∫

Cj

1

(z − λj)k
dz.

In (10.3) we found that each, save the first, of the integrals under the sum is in fact zero. Hence
∫

Cj

r(z) dz = 2πirj,1. (10.7)

With rj,1 in hand, say from (9.19) or residue, one may view (10.7) as a means for computing the
indicated integral. The opposite reading, i.e., that the integral is a convenient means of expressing
rj,1, will prove just as useful. With that in mind, we note that the remaining residues may be
computed as integrals of the product of r and the appropriate factor. More precisely,

∫

Cj

r(z)(z − λj)
k−1 dz = 2πirj,k. (10.8)

It is a simple, but highly important, matter to extend this representation to a matrix of rational
functions. More precisely, if R(z) ≡ (zI − B)−1 is the resolvent associated with B then (10.6) and
(10.8) state that

R(z) =

h∑

j=1

pj∑

k=1

Rj,k

(z − λj)k

where

Rj,k =
1

2πi

∫

Cj

R(z)(z − λj)
k−1 dz. (10.9)

Lets consider these in the concrete setting of critically damped single mass. The resolvent in that
case, recall (9.20), can then be expressed

(sI − B)−1 =
1

(s+ 1)2

(
s + 2 1
−1 s

)
=

R1,1

s+ 1
+

R1,2

(s+ 1)2
(10.10)
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where

R1,1 =
1

2πi

(∫
C1

z+2
(z+1)2

dz
∫
C1

1
(z+1)2

dz∫
C1

−1
(z+1)2

dz
∫
C1

z
(z+1)2

dz

)
and R1,2 =

1

2πi

(∫
C1

z+2
z+1

dz
∫
C1

1
z+1

dz∫
C1

−1
z+1

dz
∫
C1

z
z+1

dz

)
(10.11)

and C1 encloses the pole z = −1. The off-diagonal terms of both matrices may be computed directly
from our bare–handed result, (10.3). Evaluation of the diagonal terms will follow from the theory
built in the next section.

10.2. The Second Residue Theorem

After (10.7) and (10.8) perhaps the most useful consequence of Cauchy’s Theorem is the freedom
it grants one to choose the most advantageous curve over which to integrate. More precisely,

Proposition 10.3. Suppose that C2 is a closed curve that lies inside the region encircled by the
closed curve C1. If f is differentiable in the annular region outside C2 and inside C1 then

∫

C1

f(z) dz =

∫

C2

f(z) dz.

Proof: With reference to the figure below we introduce two vertical segments and define the closed
curves C3 = abcda (where the bc arc is clockwise and the da arc is counter-clockwise) and C4 = adcba
(where the ad arc is counter-clockwise and the cb arc is clockwise). By merely following the arrows
we learn that ∫

C1

f(z) dz =

∫

C2

f(z) dz +

∫

C3

f(z) dz +

∫

C4

f(z) dz.

As Cauchy’s Theorem implies that the integrals over C3 and C4 each vanish, we have our result.
End of Proof.

a

b

c

d

C

C

1

2

Figure 10.2. The Curve Replacement Lemma.

As an example, recalling (10.6) and (10.7), we may express the integral of a rational function
around a curve that encircles all of its poles as a sum of residues

∫

C

r(z) dz =
h∑

j=1

pj∑

k=1

∫

Cj

rj,k
(z − λj)k

dz = 2πi
h∑

j=1

rj,1. (10.12)

To take a slightly more complicated example let us integrate f(z)/(z−a) over some closed curve
C inside of which f is differentiable and a resides. Our Curve Replacement Lemma now permits us
to claim that ∫

C

f(z)

z − a
dz =

∫

C(a,ρ)

f(z)

z − a
dz.
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It appears that one can go no further without specifying f . The alert reader however recognizes
that the integral over C(a, ρ) is independent of ρ and so proceeds to let ρ→ 0, in which case z → a
and f(z) → f(a). Computing the integral of 1/(z − a) along the way we are lead to the hope that

∫

C

f(z)

z − a
dz = f(a)2πi.

In support of this conclusion we note that

∫

C(a,ρ)

f(z)

z − a
dz =

∫

C(a,ρ)

{
f(z)

z − a
+

f(a)

z − a
− f(a)

z − a

}
dz

= f(a)

∫

C(a,ρ)

1

z − a
dz +

∫

C(a,ρ)

f(z)− f(a)

z − a
dz.

Now the first term is f(a)2πi regardless of ρ while, as ρ → 0, the integrand of the second term
approaches f ′(a) and the region of integration approaches the point a. Regarding this second term,
as the integrand remains bounded (in fact it tends to f ′(a)) as the region of integration shrinks to
a point, the integral must tend to zero. We have just proven

Proposition 10.4. Cauchy’s Integral Formula. If f is differentiable on and in the closed
curve C then

f(a) =
1

2πi

∫

C

f(z)

z − a
dz (10.13)

for each a lying inside C.

The consequences of such a formula run far and deep. We shall delve into only one or two. First,
we note that, as a does not lie on C, the right hand side of (10.13) is a perfectly smooth function
of a. Hence, differentiating each side, we find

f ′(a) =
df(a)

da
=

1

2πi

∫

C

d

da

f(z)

z − a
dz =

1

2πi

∫

C

f(z)

(z − a)2
dz (10.14)

for each a lying inside C. Applying this reasoning n times we arrive at a formula for the nth
derivative of f at a,

dnf

dan
(a) =

n!

2πi

∫

C

f(z)

(z − a)1+n
dz (10.15)

for each a lying inside C. The upshot is that once f is shown to be differentiable it must, in fact,
be infinitely differentiable. Regarding concrete examples, the diagonal terms in (10.11), where C1

is a circle centered at z = −1, may be evaluated by (10.13) and (10.15) respectively. In particular,

1

2πi

∫

C

s

s+ 1
= −1 and

1

2πi

∫

C

s

(s+ 1)
= 1. (10.16)

On substiution into (10.11) we find

R1,1 =

(
1 0
0 1

)
and R1,2 =

(
1 1
−1 −1

)
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which on substitution in (10.10) delivers

(sI − B)−1 =
1

s+ 1

(
1 0
0 1

)
+

1

(s + 1)2

(
1 1
−1 −1

)

in complete agreement with (9.21).

As a second example let us consider

1

2πi

∫

C

f(z)

(z − λ1)(z − λ2)2
dz

where f is differentiable on and in C and C encircles both λ1 and λ2. By the curve replacement
lemma this integral is the sum

1

2πi

∫

C1

f(z)

(z − λ1)(z − λ2)2
dz +

1

2πi

∫

C2

f(z)

(z − λ1)(z − λ2)2
dz

where λj now lies in only Cj. As f(z)/(z−λ2) is well behaved in C1 we may use (10.13) to conclude
that

1

2πi

∫

C1

f(z)

(z − λ1)(z − λ2)2
dz =

f(λ1)

(λ1 − λ2)2
.

Similarly, As f(z)/(z − λ1) is well behaved in C2 we may use (10.14) to conclude that

1

2πi

∫

C2

f(z)

(z − λ1)(z − λ2)2
dz =

d

da

f(a)

(a− λ1)

∣∣∣∣
a=λ2

.

These calculations can be read as a concrete instance of

Proposition 10.5. The Second Residue Theorem. If g is a polynomial with roots {λj}hj=1

of degree {pj}hj=1 and C is a closed curve encircling each of the λj and f is differentiable on and
in C then ∫

C

f(z)

g(z)
dz = 2πi

h∑

j=1

res(f/g, λj)

where

res(f/g, λj) = lim
z→λj

1

(pj − 1)!

dpj−1

dzpj−1

(
(z − λj)

pj
f(z)

g(z)

)
(10.17)

is called the residue of f/g at λj by extension of (9.19).

The generality of this statement, and the notation required to specify the residue, should not
obscure the fact that it permits us to compute important integrals by merely evaluating the good

parts at the bad places. The bad places are of course the poles of the integrand and the good part
of the integrand is what remains after multiplying by the offending factor, and perhaps taking a
few derivatives. For example, the integrands in

1

2πi

∫

C(0,1)

exp(z)

zp
dz, p = 1, 2, . . .
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have z = 0 ia a pole of order p and so we must take p− 1 derivatives of the good part, exp(z), at
z = 0, and finally divide by (p− 1)!. Hence,

1

2πi

∫

C(0,1)

exp(z)

zp
dz =

1

(p− 1)!
.

One of the most useful applications of the Second Residue Theorem is the formula for the inverse
Laplace transform of a rational function.

10.3. The Inverse Laplace Transform and Return to Dynamics

If r is a rational function with poles {λj}hj=1 then the inverse Laplace transform of r is

(L−1r)(t) ≡ 1

2πi

∫

C

r(z) exp(zt) dz (10.18)

where C is a curve that encloses each of the poles of r. As a result

(L−1r)(t) =

h∑

j=1

res(r(z) exp(zt), λj). (10.19)

Let us put this lovely formula to the test. We take our examples from dynamical systems of Chapter
8. According to (10.19) the inverse Laplace Transform of

r(z) =
1

(z + 1)2
.

is simply the residue of r(z) exp(zt) at z = −1, i.e.,

res(r(z) exp(zt),−1) = lim
z→−1

d

dz
exp(zt) = t exp(−t).

This closes the circle on the example begun in §8.3 and continued in Exer. 8.1.
For our next example we return to (10.7) and take the inverse Laplace transform of the con-

stituents of the resolvent

(zI −B)−1 =
1

z2 + 1

(
z 1
−1 z

)
of B =

(
0 1
−1 0

)
.

In particular, we compute

L−1 z

z2 + 1
=
z exp(zt)(z + i)

z2 + 1

∣∣∣∣
z=−i

+
z exp(zt)(z − i)

z2 + 1

∣∣∣∣
z=i

= exp(−it)/2 + exp(it/2) = cos(t)

and

L−1 1

z2 + 1
=

exp(zt)(z + i)

z2 + 1

∣∣∣∣
z=−i

+
exp(zt)(z − i)

z2 + 1

∣∣∣∣
z=i

= i exp(−it)/2 − i exp(it)/2 = sin(t)

and recall the mysterious (8.28) en route to the lovely

exp(Bt) = L−1(sI − B)−1 =

(
cos(t) sin(t)
− sin(t) cos(t)

)
.
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You may wish to confirm that this matrix indeed obeys (exp(Bt))′ = B exp(Bt).

−3 −2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

C
L
(ρ)

C
A
(ρ)

Figure 10.3 An illustration of the contour in (10.23) when ρ = 2.

The curve replacement lemma of course gives us considerable freedom in our choice of the curve C
used to define the inverse Laplace transform, (10.18). As in applications the poles of r are typically
in the left half of the complex plane (why?) it is common to choose C to be the half circle, see
Figure 10.3,

C = CL(ρ) ∪ CA(ρ), (10.20)

comprised of the line segment, CL, and arc, CA,

CL(ρ) ≡ {iω : −ρ ≤ ω ≤ ρ} and CA(ρ) ≡ {ρ exp(iθ) : π/2 ≤ θ ≤ 3π/2},

where ρ is chosen large enough to encircle the poles of r. With this concrete choice, (10.18) takes
the form

(L−1r)(t) =
1

2πi

∫

CL

r(z) exp(zt) dz +
1

2πi

∫

CA

r(z) exp(zt) dz

=
1

2π

∫ ρ

−ρ
r(iω) exp(iωt) dω +

ρ

2π

∫ 3π/2

π/2

r(ρ exp(iθ)) exp(ρ exp(iθ)t) exp(iθ) dθ.

(10.21)

Although this second term appears unwieldy it can be shown to vanish as ρ → ∞, in which case
we arrive at

(L−1r)(t) =
1

2π

∫ ∞

−∞
r(iω) exp(iωt) dω, (10.22)

the conventional definition of the inverse Laplace transform.

10.4. The Inverse Fourier Transform and the Causal Wiener Filter∗

Our interest is conditions on f that assure causality, i.e.,

∫ 1

0

f(ω) exp(2kπiω) dω = 0 ∀ k = −1,−2, . . . . (10.23)
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Suppose f is a rational function of exp(2πiω), i.e.,

f(ω) =
p(exp(2πiω))

q(exp(2πiω))

where p and q are polynomials. The change of variable z = exp(2πiω) will reduce (10.23) to a
residue problem. In particular, as dz = 2πizdω we find

∫ 1

0

p(exp(2πiω))

q(exp(2πiω))
exp(−2kπiω) dω =

1

2πi

∫

C1

p(z)

q(z)
z−k−1 dz

=
h∑

j=1

mj∑

m=1

rj,m
2πi

∫

C1

dz

(z − λj)mzk+1

where the last equality follows from the partial fraction expansion of p/q. We now note that if
|λj| < 1 then the residues at z = 0 and z = λj are equal and opposite

1

2πi

∫

C1

(z − λ)−mz−k−1 dz =
1

(m− 1)!

dm−1

dzm−1
z−k−1

∣∣∣∣
z=λ

+
1

k!

dk

dzk
(z − λ)−m

∣∣∣∣
z=0

=
(m− 1 + k)!

(m− 1)!k!
(−1)m−1z−m−k

∣∣∣∣
z=λ

+
(m− 1 + k)!

k!(m− 1)!
(−1)k(z − λ)−m−k

∣∣∣∣
z=0

=
(m− 1 + k)!

k!(m− 1)!
{(−1)m−1 + (−1)m}λ−m−k = 0.

This provides the clue to revising the IIR filter (9.69) â(ω) = ĉxy(ω)/ĉxx(ω). The obvious guess of
simply keeping the good part is too naive. Instead we establish the

Proposition 10.6. If f(ω) > 0 and integrable and is a rational function of exp(2πiω) then f
may be factored as

f(ω) = L(exp(2πiω))L(exp(2πiω)) (10.24)

where all poles of L lie strictly inside the unit disk.

Proof: To begin

f(ω) = c

∏n
j=1(exp(2πiω)− µj)

∏d
j=1(exp(2πiω)− λj)

where c 6= 0 and no µj nor λj is zero. Also, no λj has magnitude 1, for this would make f
nonintegrable. And no µj has magnitude 1, for f never vanishes.

As f is real we equate conjugates and find

c

∏n
j=1(exp(2πiω)− µj)

∏d
j=1(exp(2πiω)− λj)

= c

∏n
j=1(exp(−2πiω)− µj)∏d
j=1(exp(−2πiω)− λj)

= c exp(2πi(d− n)ω)

∏n
j=1(1/µj − exp(2πiω))µj∏d
j=1(1/λj − exp(2πiω))λj

and so for pole λj we find that 1/λj is also a pole. As such we may partition the poles into
those lying within the unit circle {λ+j : j = 1, . . . , d/2} and their reflections across the unit circle
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{1/λ+j : j = 1, . . . , d/2}. Similar, we partition the zeros into those lying within the unit circle

{µ+
j : j = 1, . . . , n/2} and their reflections across the unit circle {1/µ+

j : j = 1, . . . , n/2}. With this
we may define

L(ω) ≡
∏n/2

j=1(exp(2πiω)− µ+
j )∏d/2

j=1(exp(2πiω)− λ+j )
,

note that its zeros and poles lie strictly inside the unit circle and compute

L(ω)L(ω) =

∏n/2
j=1(exp(2πiω)− µ+

j )(exp(−2πiω)− µ+
j )∏d/2

j=1(exp(2πiω)− λ+j )(exp(−2πiω)− λ
+

j )

= exp(πi(d− n)ω)

∏n/2
j=1(exp(2πiω)− µ+

j )(1/µ
+
j − exp(2πiω))µ+

j∏d/2
j=1(exp(2πiω)− λ+j )(1/λ

+

j − exp(2πiω))λ
+

j

= exp(πi(d− n)ω)(−1)(n−d)/2
∏n/2

j=1 µ
+
j∏d/2

j=1 λ
+
j

f(ω)

c
.

As both the left hand side and f are nonnegative we can take magnitudes of both sides and conclude
that

L(ω)L(ω) = ρf(ω) where ρ =

∣∣∣∣∣

∏n/2
j=1 µ

+
j

c
∏d/2

j=1 λ
+
j

∣∣∣∣∣

On setting L = L/
√
ρ we conclude (10.24). End of Proof.

We assume that cxx is rational and exploit its factorization in the the associated error spectrum,
recall (9.68), takes the form

ĉεε(ω) = ĉyy(ω)− â(ω)ĉxy(ω)− â(ω)ĉxy(ω) + |â(ω)|2L(exp(2πiω))L(exp(2πiω))
= ĉyy(ω) + |â(ω)L(exp(2πiω))− ĉxy/L(exp(2πiω))|2 − |ĉxy(ω)|2/cxx(ω)

Now, as we wish to determine the best causal a we expect â to have all of its poles within C1.
As the poles of L are also there then the best we can do is to match the causal part of scaled
cross-spectrum. More precisely, we suppose that ĉxy is also rational then use partial fractions to
write

ĉxy

L(exp(2πiω))
=

{
ĉxy

L(exp(2πiω))

}

+

+

{
ĉxy

L(exp(2πiω))

}

−

as a sum of terms with poles within and without (respectively) of C1. With this notation we may
solve the causal Wiener filter for rational spectra via

â(ω) =
1

L(exp(2πiω))

{
ĉxy

L(exp(2πiω))

}

+

. (10.25)

10.5. Further Applications of the Second Residue Theorem∗

We show how to structure an integrand so that the Second Residue Theorem returns the number
of zeros of a pair of functions within a chosen region. This in turn leads to a beautiful comparison
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theorem that permits us to equate the number of zeros of a “hard” function with that of an “easy”
function. This in turn permits us to prove the Fundamental Theorem of Algebra, i.e., the statement
that every nth order polynomial has n zeros. And finally, by a very similar argument we prove a
useful perturbation result. Namely, we show that the zeros of a polynomial don’t move drastically
when one perturbs the polynomial coefficients. We begin with the zero counter.

Proposition 10.7. The Argument Principle. If r = f/g is the ratio of two differentiable
functions on and in the simple closed curve C and neither f nor g have zeros on C then

1

2πi

∫

C

r′(z)

r(z)
dz = Z(f, C)− Z(g, C), (10.26)

where Z(f, C) is the number (counting multiplicity) of zeros of f in C.

Proof: From r(z) = f(z)/g(z) comes

r′(z)

r(z)
=
g(z)f ′(z)− f(z)g′(z)

f(z)g(z)

and so each pole of r′/r is a zero of either f or g. We take these up separately.
If λ is a zero of f of order k then r(z) = (z − λ)kq(z) where q(λ) 6= 0. It follows that r′(z) =

k(z − λ)k−1q(z) + (z − λ)kq′(z) and so

r′(z)

r(z)
=

k

z − λ
+
q′(z)

q(z)
.

As the latter term is well behaved at z = λ it follows that res(r′/r, λ) = k.
If µ is a zero of g of order m then r(z) = (z − µ)−mp(z) where p(µ) 6= 0. It follows that

r′(z) = −m(z − µ)−m−1p(z) + (z − µ)−mp′(z) and so

r′(z)

r(z)
=

−m
z − µ

+
p′(z)

p(z)
.

As the latter term is well behaved at z = µ it follows that res(r′/r, µ) = −m.
Combining these two residue calculations, the Second Residue Theorem delivers (10.26). End of

Proof.

From this we establish the very useful comparison principle.

Proposition 10.8. Rouché’s Theorem. If f and g are two complex differentiable functions on
and in the simple closed curve C and

|f(z)− g(z)| < |g(z)| ∀ z ∈ C (10.27)

then f and g have the same number of zeros in C.

Proof: We define r ≡ f/g and deduce from (10.27) that r has neither zeros nor poles on C. As such
we may read from the Argument Principle that

1

2πi

∫

C

r′(z)

r(z)
dz = Z(f, C)− Z(g, C),
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and so it remains to show that this integral is zero. To wit, we note that

F (t) =
1

2πi

∫

C

r′(z)

r(z) + t
dz = Z(f + tg, C)− Z(g, C)

is both integer valued and continuous in t. This implies that F (t) is constant. This constant reveals
itself on noting that

|F (t)| ≤ |C|
2π

max{|r′(z)| : z ∈ C}
t−max{|r(z)| : z ∈ C} .

This implies that F (t) → 0 as t → ∞. Hence, 0 = F (0) = Z(f, C) − Z(g, C) as claimed. End of

Proof.

This has many subtle applications, perhaps the simplest being

Proposition 10.9. Fundamental Theorem of Algebra. If f(z) is a polynomial of degree n
the f has precisely n zeros.

Proof: From f(z) = f0 + f1z + · · ·+ fnz
n we construct g(z) = fnz

n and C = C(0, R) where

R = 1 +
1

|fn|
n−1∑

j=0

|fj|.

It now follows from the triangle inequality that for z ∈ C,

|f(z)− g(z)| = |f0 + f1z + · · ·+ fn−1z
n−1| ≤ Rn−1

n−1∑

j=0

|fj| < |fn|Rn = |fnzn| = |g(z)|.

It now follows from Rouché’s Theorem that f and g have the same number of zeros in C. As g has
n zeros there then so too does f . End of Proof.

By a very similar argument we can show that the roots of polynomial are continuous functions
of its coefficients. We will use this result to build a quantitative perturbation theory in Chapter 12.

Proposition 10.10. Suppose f(ε, z) = f0(ε) + f1(ε)z + f2(ε)z
2 + · · ·+ fn(ε)z

n where each fj is
a continuous complex function of the complex parameter ε in some ball about ε = 0. If λ is a
zero of order k of z 7→ f(0, z) then there exists an ρ > 0 and ε0 > 0 such that z 7→ f(ε, z) has
precisely k zeros in C(λ, ρ) when |ε| < ε0.

Proof: Pick ρ > 0 so that no other zeros of z 7→ f(0, z) lie in C = C(λ, ρ) and record

F = min
z∈C

|f(0, z)| and R = 1 +max
z∈C

|z|.

As each fj is continuous we may choose an ε0 small enough to guarantee that

max
j

|fj(ε)− fj(0)| <
F

(n+ 1)Rn
, ∀ |ε| < ε0.

This permits us to establish the bound

|f(ε, z)− f(0, z)| ≤
n∑

j=0

|fj(ε)− fj(0)||zj| < F ≤ |f(0, z)|,
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and so conclude from Rouché’s Theorem that z 7→ f(ε, z) has the same number of zeros in C as
z 7→ f(0, z) for each |ε| < ε0. End of Proof.

10.6. Notes and Exercises

We have followed Levinson and Redheffer (1970) throughout, except for Doob (1990) for the
Wiener Filter.

1. Compute the integral of z2 along the parabolic segment z(t) = t+ it2 as t ranges from 0 to 1.

2. Evaluate each of the integrals below and state which result you are using, e.g., The bare–
handed calculation (10.3), Cauchy’s Theorem, The Cauchy Integral Formula, The Second
Residue Theorem, and show all of your work.

∫

C(2,1)

cos(z)

z − 2
dz,

∫

C(2,1)

cos(z)

z(z − 2)
dz,

∫

C(2,1)

cos(z)

z(z + 2)
dz,

∫

C(0,2)

cos(z)

z3 + z
dz,

∫

C(0,2)

cos(z)

z3
dz,

∫

C(0,2)

z cos(z)

z − 1
dz.

3. Choose C in the Cauchy Integral Formula to be the circle of radius ρ centered about a defined
in (10.2) and deduce from (10.13) the beautiful Mean Value Theorem

f(a) =
1

2π

∫ 2π

0

f(a+ ρ exp(it)) dt. (10.28)

Confirm this for f(z) = zm, where m is a positive integer, by computing both sides of (10.28)
by hand for arbitrary a and ρ.

4. Use (10.19) to compute the inverse Laplace transform of 1/(s2 + 2s+ 2).

5. Use the result of the previous exercise to solve, via the Laplace transform, the differential
equation

x′(t) + x(t) = exp(−t) sin t, x(0) = 0.

Hint: Take the Laplace transform of each side.

6. Evaluate all expressions in (10.20) in Matlab’s symbolic toolbox via syms, diff and subs

and confirm that the final result jibes with (***.

7. Let us check the limit we declared in going from (10.21) to (10.22). First show that

| exp(ρ exp(iθ)t)| = exp(ρt cos θ).

Next show (perhaps graphically) that

cos θ ≤ 1− 2θ/π when π/2 ≤ θ ≤ π.
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Now confirm each step in

ρ

∣∣∣∣∣

∫ 3π/2

π/2

r(ρ exp(iθ)) exp(ρ exp(iθ)t) exp(iθ) dθ

∣∣∣∣∣ ≤ ρmax
θ

|r(ρ exp(iθ))|
∫ 3π/2

π/2

| exp(ρ exp(iθ)t)| dθ

= ρmax
θ

|r(ρ exp(iθ))|2
∫ π

π/2

exp(ρt cos θ) dθ

≤ ρmax
θ

|r(ρ exp(iθ))|2
∫ π

π/2

exp(ρt(1− 2θ/π)) dθ

= max
θ

|r(ρ exp(iθ))|(π/t)(1− exp(−ρt)),

and finally argue why
max
θ

|r(ρ exp(iθ))| → 0

as ρ→ ∞.
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11. The Eigenvalue Problem

Eigenvalues appeared naturally in our discussion of dynamics in Chapter 8. After a two–chapter
tour of the necessary tools from Complex Analysis we are now prepared to fully understand eigen-
values, and therefore dynamics.

Recall that we labeled the complex number λ an eigenvalue of B if λI −B was not invertible.
In order to find such λ one has only to find those s for which (sI − B)−1 is not defined. To take a
concrete example we note that if

B =



1 1 0
0 1 0
0 0 2


 (11.1)

then the Gauss–Jordan method delivers

(sI − B)−1 =
1

(s− 1)2(s− 2)



(s− 1)(s− 2) s− 2 0

0 (s− 1)(s− 2) 0
0 0 (s− 1)2


 (11.2)

and so λ1 = 1 and λ2 = 2 are the two eigenvalues of B. Now, to say that λjI − B is not invertible
is to say that its columns are linearly dependent, or, equivalently, that the null space N (λjI − B)
contains more than just the zero vector. We call N (λjI − B) the jth eigenspace and call each of
its nonzero members a jth eigenvector. With respect to the B in (11.1) we note that



1
0
0


 and



0
0
1


 (11.3)

respectively span N (λ1I − B) and N (λ2I − B). That B ∈ R3×3 but possesses only 2 linearly
independent eigenvectors suggests that matrices can not necessarily be judged by the number of
their eigenvectors. After a little probing one might surmise that B’s condition is related to the
fact that λ1 is a double pole of (sI − B)−1. In order to flesh out that remark and find a proper
replacement for the missing eigenvector we must take a much closer look at the resolvent. We achieve
that in the first two sections, arriving at the Spectral Representation, the most significant and
general Proposition of the second third of this text.

In the subsequent sections we provide alternate expressions, with examples, of this general result
in a number of important instances. This yields the Schur and Jordan Forms and several points of
view on the matrix exponential and permits the presentation and solution of the problem of ranking
web pages.

11.1. The Resolvent

One means by which to come to grips with (sI −B)−1 is to treat it as the matrix analog of the
scalar function

1

s− b
. (11.4)

This function is a scaled version of the even simpler function 1/(1−z). This latter function satisfies
(recall the n-term geometric series, Exer. 9.3)

1

1− z
= 1 + z + z2 + · · ·+ zn−1 +

zn

1− z
(11.5)
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for each positive integer n. Furthermore, if |z| < 1 then zn → 0 as n → ∞ and so (11.5) becomes,
in the limit,

1

1− z
=

∞∑

n=0

zn,

the full geometric series. Returning to (11.4) we write

1

s− b
=

1/s

1− b/s
=

1

s
+

b

s2
+ · · ·+ bn−1

sn
+
bn

sn
1

s− b
,

and hence, so long as |s| > |b| we find,

1

s− b
=

1

s

∞∑

n=0

(
b

s

)n
.

This same line of reasoning may be applied in the matrix case. That is,

(sI − B)−1 = s−1(I −B/s)−1 =
1

s
+
B

s2
+ · · ·+ Bn−1

sn
+
Bn

sn
(sI −B)−1, (11.6)

and hence, so long as s is larger than any element of B, e.g., if |s| > ‖B‖F where the latter is
defined in (1.17), we find

(sI − B)−1 = s−1
∞∑

n=0

(B/s)n. (11.7)

Although (11.7) is indeed a formula for the resolvent you may, regarding computation, not find it
any more attractive than the Gauss-Jordan method. We view (11.7) however as an analytical rather
than computational tool. More precisely, it facilitates the computation of integrals of the resolvent.
For example, if Cρ is the circle of radius ρ centered at the origin and ρ > ‖B‖ then

∫

Cρ

(sI − B)−1 ds =
∞∑

n=0

Bn

∫

Cρ

s−1−n ds = 2πiI. (11.8)

Lets check this on the concrete resolvent in (11.2). For ρ > 2 we find indeed that

1

2πi

∫

Cρ

(sI −B)−1 ds =
1

2πi




∫
Cρ

ds
s−1

∫
Cρ

ds
(s−1)2

0

0
∫
Cρ

ds
s−1

0

0 0
∫
Cρ

ds
s−2


 =



1 0 0
0 1 0
0 0 1


 . (11.9)

This result is essential to our study of the eigenvalue problem. As are the two resolvent identities.
Regarding the first, with R(s) ≡ (sI − B)−1, we deduce from the simple observation

(s2I − B)−1 − (s1I − B)−1 = (s2I −B)−1(s1I − B − s2I +B)(s1I − B)−1

that
R(s2)−R(s1) = (s1 − s2)R(s2)R(s1). (11.10)

The second identity is simply a rewriting of

(sI − B)(sI −B)−1 = (sI − B)−1(sI −B) = I,
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namely,

BR(s) = R(s)B = sR(s)− I. (11.11)

You may wish to confirm that our concrete resolvent, (11.2), indeed obeys these identities.

The Gauss–Jordan method informs us that R(s) will be a matrix of rational functions of s,
with a common denominator. In keeping with the notation of the previous chapters we assume the
denominator to have the h distinct roots, {λj}hj=1 with associated orders {µj}hj=1, and recall that
(10.9) produced

R(s) =

h∑

j=1

µj∑

k=1

Rj,k

(s− λj)k
where Rj,k =

1

2πi

∫

Cj

R(z)(z − λj)
k−1 dz. (11.12)

In the previous 2 chapters we took a fairly pedestrian, element-wise approach and evaluated these
as matrices of integrals. For example, the resolvent in (11.2) has coefficients

R1,1 =
1

2πi




∫
C1

ds
s−1

∫
C1

ds
(s−1)2

0

0
∫
C1

ds
s−1

0

0 0
∫
C1

ds
s−2


 =



1 0 0
0 1 0
0 0 0


 (11.13)

and similarly

R1,2 =



0 1 0
0 0 0
0 0 0


 and R2,1 =



0 0 0
0 0 0
0 0 1


 .

As noted already, these matrices enjoy some amazing properties, e.g.,

R2
1,1 = R1,1, R2

2,1 = R2,1, R1,1R2,1 = 0, and R2
1,2 = 0. (11.14)

To establish that such structure inheres to the coefficients in the partial fraction expansion of the
resolvent of every matrix we must step back from an element-wise focus on the Rj,k and instead
view them as integrals of matrices. To begin, lets show that each Rj,1 is a projection.

Proposition 11.1. R2
j,1 = Rj,1.

Proof: Recall that the Cj appearing in (11.12) is any circle about λj that neither touches nor encircles
any other root. Suppose, as in Figure 11.1, that Cj and C

′
j are two such circles and C ′

j encloses Cj.
Now, by the curve replacement lemma,

Rj,1 =
1

2πi

∫

Cj

R(z) dz =
1

2πi

∫

C′

j

R(w) dw
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and so

R2
j,1 =

1

(2πi)2

∫

Cj

R(z) dz

∫

C′

j

R(w) dw

=
1

(2πi)2

∫

Cj

∫

C′

j

R(z)R(w) dw dz

=
1

(2πi)2

∫

Cj

∫

C′

j

R(z)− R(w)

w − z
dw dz

=
1

(2πi)2

{∫

Cj

R(z)

∫

C′

j

1

w − z
dw dz −

∫

C′

j

R(w)

∫

Cj

1

w − z
dz dw

}

=
1

2πi

∫

Cj

R(z) dz = Rj,1.

We used the first resolvent identity, (11.10), in moving from the second to the third line. In moving
from the fourth to the fifth we used only

∫

C′

j

1

w − z
dw = 2πi and

∫

Cj

1

w − z
dz = 0. (11.15)

The latter integrates to zero because Cj does not encircle w. End of Proof.

λ
j C

j

z

C
j
′

w

λ
kC

k

w

Figure 11.1. The curves that figure in Propositions 11.1–11.3.

Recalling Definition 6.1 that matrices that equal their squares are projections we adopt the
abbreviation

Pj ≡ Rj,1.

With respect to the proof that PjPk = 0 when j 6= k, the calculation runs along the same lines.
The difference comes in (11.15) where, regarding Figure 11.1, as Cj lies completely outside of Ck,
both integrals are zero. Hence,

Proposition 11.2. If j 6= k then PjPk = 0.

Along the same lines we define

Dj ≡ Rj,2
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and prove that its lower powers indeed coincide with the subsequent Rj,k and that its higher powers
vanish entirely.

Proposition 11.3. If 1 ≤ k ≤ µj − 1 then Dk
j = Rj,k+1. D

µj
j = 0.

Proof: For k and ℓ greater than or equal to one and Cj and C
′
j as in Figure 11.1,

Rj,k+1Rj,ℓ+1 =
1

(2πi)2

∫

Cj

R(z)(z − λj)
k dz

∫

C′

j

R(w)(w − λj)
ℓ dw

=
1

(2πi)2

∫

Cj

∫

C′

j

R(z)R(w)(z − λj)
k(w − λj)

ℓ dw dz

=
1

(2πi)2

∫

C′

j

∫

Cj

R(z)−R(w)

w − z
(z − λj)

k(w − λj)
ℓ dw dz

=
1

(2πi)2

∫

Cj

R(z)(z − λj)
k

∫

C′

j

(w − λj)
ℓ

w − z
dw dz

− 1

(2πi)2

∫

C′

j

R(w)(w − λj)
ℓ

∫

Cj

(z − λj)
k

w − z
dz dw

=
1

2πi

∫

Cj

R(z)(z − λj)
k+ℓ dz = Rj,k+ℓ+1.

because ∫

C′

j

(w − λj)
ℓ

w − z
dw = 2πi(z − λj)

ℓ and

∫

Cj

(z − λj)
k

w − z
dz = 0. (11.16)

With k = ℓ = 1 we have shown R2
j,2 = Rj,3, i.e., D

2
j = Rj,3. Similarly, with k = 1 and ℓ = 2 we find

Rj,2Rj,3 = Rj,4, i.e., D
3
j = Rj,4, and so on. Finally, at k = µj we find

D
µj
j = Rj,µj+1 =

1

2πi

∫

Cj

R(z)(z − λj)
µj dz = 0

by Cauchy’s Theorem. End of Proof.

Of course this last result would be trivial if in fact Dj = 0. Note that if µj > 1 then

D
µj−1
j = Rj,µj =

∫

Cj

R(z)(z − λj)
µj−1 dz 6= 0

for the integrand then has a term proportional to 1/(z − λj), which we know, by (10.3), leaves a
nonzero residue. When some power of a matrix vanishes we call the matrix nilpotent.

With this we have now arrived at a much richer specification of the generic expansion (11.12),
namely

R(z) =

h∑

j=1

{
1

z − λj
Pj +

µj−1∑

k=1

1

(z − λj)k+1
Dk
j

}
, (11.17)

along with verification of a number of the properties enjoyed by the eigenprojections, Pj, and
eigennilpotents, Dj.
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11.2. The Spectral Representation

With just a little bit more work we shall arrive at a similar expansion for B itself. We begin by
applying the second resolvent identity, (11.11), to Pj. More precisely, we note that (11.11) implies
that

BPj = PjB =
1

2πi

∫

Cj

(zR(z)− I) dz

=
1

2πi

∫

Cj

zR(z) dz

=
1

2πi

∫

Cj

R(z)(z − λj) dz +
λj
2πi

∫

Cj

R(z) dz

= Dj + λjPj ,

(11.18)

where the second equality is due to Cauchy’s Theorem and the third arises from adding and sub-
tracting λjR(z). Summing (11.18) over j we find

B
h∑

j=1

Pj =
h∑

j=1

λjPj +
h∑

j=1

Dj . (11.19)

We can go one step further, namely the evaluation of the first sum. This stems from (11.8) where
we integrated R(s) over a circle Cρ where ρ > ‖B‖. The connection to the Pj is made by the residue
theorem. More precisely,

∫

Cρ

R(z) dz = 2πi
h∑

j=1

Pj .

Comparing this to (11.8) we find
h∑

j=1

Pj = I, (11.20)

and so (11.19) takes the form

B =
h∑

j=1

λjPj +
h∑

j=1

Dj. (11.21)

It is this formula that we refer to as the Spectral Representation of B. To the numerous
connections between the Pj and Dj we wish to add one more. We first write (11.18) as

(B − λjI)Pj = Dj (11.22)

and then raise each side to the kth power to arrive at

(B − λjI)
kPj = Dk

j , (11.23)

where we’ve used the fact that P 2
j = Pj and BPj = PjB. With k = µj in (11.23) we arrive at the

lovely

(B − λjI)
µjPj = 0. (11.24)
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For this reason we call the range of Pj the jth generalized eigenspace, call each of its nonzero
members a jth generalized eigenvector. The completion of a basis of eigenvectors to a basis of
generalized eigenvectors will follow from the following nesting property.

Proposition 11.4. N ((λjI − B)k) ⊂ R(Pj) for k = 1, . . . , µj, and N ((B − λjI)
µj ) = R(Pj).

Proof: The key is the second resolvent identity, (11.11). For starting with k = 1 we find that if
e ∈ N (B − λj) then Be = λje and (11.11) reveals that R(s)Be = λjR(s)e = sR(s)e − e, which
upon simple rearrangement brings

R(s)e =
1

s− λj
e. (11.25)

and so

Pje =
1

2πi

∫

Cj

R(s)e ds =
1

2πi

∫

Cj

1

s− λj
e ds = e.

Regarding k = 2 we note that if x ∈ N ((B − λjI)
2) then Bx = λjx+ e for some e ∈ N (B − λjI).

The second resolvent identity applied to x now reveals R(s)Bx = λjR(s)x + R(s)e = sR(s)x− x,
and upon rearrangement and recalling (11.25)

R(s)x =
1

(s− λj)2
e+

1

s− λj
x. (11.26)

Upon integrating this around Cj we find indeed that Pjx = x. If y ∈ N ((B − λjI)
3) then By =

λjy + x for some x ∈ N ((B − λjI)
2). The second resolvent identity applied to y now reveals

R(s)By = λjR(s)y +R(s)x = sR(s)y − y, and upon rearrangement and recalling (11.26)

R(s)y =
1

(s− λj)3
e+

1

(s− λj)2
x+

1

s− λj
y,

and integrating this around Cj brings Pjy = y. The pattern is now clear. Finally, if x ∈ R(Pj)
then (11.24) reveals that (B − λjI)

µjx = 0, i.e., x ∈ N ((B − λjI)
µj ). End of Proof.

This result suggests that the pole order, µj, does not tell the full story. The paucity of eigenvectors
associated with λj is instead signified by the difference between the geometric multiplicity,

nj ≡ dimN (B − λjI) (11.27)

and the algebraic multiplicity
mj ≡ dimR(Pj). (11.28)

The previous proposition establishes that nj ≤ mj .
With regard to the example, (11.1), with which we began the chapter we note that n1 = 1 < 2 =

m1 and that the two eigenvectors in (11.3) may be completed by the second column of the associated
P1 (see (11.13)). We will see that there is a canonical means of completing the eigenvectors.
However, prior to developing that we look at the much easier, and in fact typical, case where each
mj = nj .
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11.3. Diagonalization of a Semisimple Matrix

If µj = 1 then we call λj semisimple. If each µj = 1 we call B semisimple. Our first observation
is that each nilpotent vanishes in the semisimple case, i.e.,

B =
h∑

j=1

λjPj. (11.29)

Our first objective is to construct a concrete alternative to this beautiful but perhaps overly concise
representation.

As each µj = 1 it follows from Prop. 11.4 that the algebraic and geometric multiplicities coincide,
i.e., mj = nj .

Let us now show that its columns are linearly independent. Suppose ej ∈ R(Pj) but that

ek =
∑

j 6=k
ajej .

As we may write this as

Pkek =
∑

j 6=k
ajPjej it follows that ek = PkPkek =

h∑

j 6=k
ajPkPjej = 0.

It then follows from (11.20) that these multiplicities sum to the ambient dimension. i.e.,

h∑

j=1

nj = n. (11.30)

We then denote by Ej = [ej,1 ej,2 · · · ej,nj
] a matrix composed of basis vectors of R(Pj). We note

that
Bej,k = λjej,k,

and so
BE = EΛ where E = [E1 E2 · · ·Eh] (11.31)

and Λ is the diagonal matrix of eigenvalues,

Λ = diag(λ1ones(n1, 1) λ2ones(n2, 1) · · ·λhones(nh, 1)).
It follows from (11.30) that E is square.

As such, it is invertible and so we have established

Proposition 11.5. If B is semisimple then there exists an invertible matrix, E, of eigenvectors
of B, and a diagonal matrix, Λ, of eigenvalues of B (repeated according to their geometric
multiplicities), such that

B = EΛE−1 and Λ = E−1BE. (11.32)

In this sense we say that E diagonalizes B. Let us work out a few examples and a number of
striking consequences. The resolvent of the rotation matrix

B =

(
0 1
−1 0

)
(11.33)
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has the partial fraction expansion

(sI − B)−1 =
1

s− i

(
1/2 −i/2
i/2 1/2

)
+

1

s + i

(
1/2 i/2
−i/2 1/2

)

We recognize that the two eigenvalues are simple poles of the resolvent, and note by inspection that
R(P1) and R(P2) are spanned by

e1 =

(
1
i

)
and e2 =

(
1
−i

)
,

respectively. We lay these into E = [e1, e2] and confirm that

E−1BE = Λ =

(
i 0
0 −i

)

as claimed. For our second example, the resolvent of the Clement matrix

B =



0 1 0
2 0 2
0 1 0


 (11.34)

has the partial fraction expansion

(sI −B)−1 =
1/4

s+ 2




1 −1 1
−2 2 −2
1 −1 1


 +

1/2

s




1 0 −1
0 0 0
−1 0 1


+

1/4

s− 2



1 1 1
2 2 2
1 1 1




and we read off the eigenvectors from the first columns of the respective projections

e1 =




1
−2
1


 , e2 =




1
0
−1


 , and e3 =



1
2
1


 .

We lay these into E = [e1, e2, e3] and confirm that

E−1BE = Λ =



−2 0 0
0 0 0
0 0 2


 .

Regarding functional consequences of our two representations

B = EΛE−1 =

h∑

j=1

λjPj, (11.35)

we note, regarding the first and using only E−1E = I, that

B2 = BB = EΛE−1EΛE−1 = EΛ2E−1,

and so, taking higher powers

Bk = EΛkE−1. (11.36)
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This is worth boxing because Bk is in general expensive to compute and difficult to interpret,
while Λk is the diagonal matrix of the kth powers of the eigenvalues of B. Regarding the second
representation in (11.35) we note, using PiPj = δijPj that

B2 =

(
h∑

j=1

λjPj

)(
h∑

i=1

λiPi

)
=

h∑

j=1

λ2jPj,

and so, for higher powers,

Bk =

h∑

j=1

λkjPj . (11.37)

As each of these representations reduces powers of the matrix to powers of (scalar) eigenvalues we
may take familiar sums of these scalar powers and arrive at new functions of the original matrix.
In particular, recalling the power series definition, (9.12),

exp(Bt) ≡
∞∑

k=0

1

k!
(Bt)k . (11.38)

In light of (11.36) this becomes

exp(Bt) =
∞∑

k=1

1

k!
E(Λt)kE−1 = E

( ∞∑

k=1

(Λt)k/k!

)
E−1 = E exp(Λt)E−1 (11.39)

where exp(Λt) is the diagonal matrix

exp(Λt) = diag(exp(λ1t)ones(n1, 1) exp(λ2t)ones(n2, 1) · · · exp(λht)ones(nh, 1)).
In like fashion we draw from (11.37) the representation

exp(Bt) =

h∑

j=1

exp(λjt)Pj. (11.40)

As the matrix exponential is of such fundamental importance to the dynamics of linear systems we
pause to develop (in fact complete) yet a third representation. It begins from the partial fraction
expansion of the resolvent of a semisimple matrix

(zI − B)−1 =
h∑

j=1

Pj
z − λj

. (11.41)

Recalling our discussion of the Backward Euler Method in §8.3 we now evaluate

lim
k→∞

(I − (t/k)B)−k.

To find this we note that (zI − B)−1 = (I −B/z)−1/z and so (11.41) may be written

(I − B/z)−1 =

h∑

j=1

zPj
z − λj

=

h∑

j=1

Pj
1− λj/z

(11.42)
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If we now set z = k/t, where k is a positive integer, and use PiPj = δijPj we arrive first at

(I − (t/k)B)−k =
h∑

j=1

Pj
(1− (t/k)λj)k

(11.43)

and so, in the limit find

lim
k→∞

(I − (t/k)B)−k =

h∑

j=1

exp(λjt)Pj = exp(Bt). (11.44)

Although each of these representations have stemmed naturally from their scalar formulations we
should still check that they do indeed resolve the dynamics problem. We carry this out for the
representation (11.40).

d

dt
exp(Bt) =

d

dt

h∑

j=1

exp(λjt)Pj =

h∑

j=1

d

dt
exp(λjt)Pj =

h∑

j=1

λj exp(λjt)Pj

=

h∑

i=1

λiPi

h∑

j=1

exp(λjt)Pj = B exp(Bt).

For the rotation matrix, (11.33), representation (11.40) yields

exp(Bt) = exp(it)

(
1/2 −i/2
i/2 1/2

)
+ exp(−it)

(
1/2 i/2
−i/2 1/2

)
=

(
cos(t) sin(t)
− sin(t) cos(t)

)
. (11.45)

While for the Clement matrix, (11.34), we find

exp(Bt) =
exp(−2t)

4




1 −1 1
−2 2 −2
1 −1 1


 +

1

2




1 0 −1
0 0 0
−1 0 1


+

exp(2t)

4



1 1 1
2 2 2
1 1 1




=
1

2




1 0 −1
0 0 0
−1 0 1


 +

1

2




cosh(2t) sinh(2t) cosh(2t)
2 sinh(2t) 2 cosh(2t) 2 sinh(2t)
cosh(2t) sinh(2t) cosh(2t)




(11.46)

11.4. The Schur Form and the QR Algorithm∗

In general, B is nonsemisimple and there is at least one µj > 1, and so there are too few
eigenvectors with which to construct a diagonalizing similarity transformation. In this case however
there still exist triangularizing similarity transformations. The diagonal of the resulting triangular
matrix will indeed be comprised of the eigenvalues of B. There are two standard ways of developing
this triangularization; the Schur form is simple to construct but typically delivers a full upper
triangle while the Jordan form is difficult to construct but confines the upper triangle to a single
super–diagonal. We start with the former.

Proposition 11.6. For B ∈ Cn×n there exists a unitary Q ∈ Cn×n and an upper triangular
U ∈ Cn×n (the Schur form of B) such that

Q∗BQ = U. (11.47)
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Proof: The proof is by induction on n. For n = 1 the proof is trivial since B is a scalar in this case.
Now assume that for any Bn−1 ∈ C(n−1)×(n−1) there exists a unitary Qn−1 ∈ C(n−1)×(n−1) such

that Q∗
n−1Bn−1Qn−1 is upper triangular.

Now suppose Bx1 = λ1x1. Suppose ‖x1‖ = 1 and denote by {x2, . . . , xn} an orthonormal basis
for the orthogonal complement of x1. The matrix X = [x1, x2, . . . , xn] is therefore unitary and

X∗BX =

(
λ1 y∗

0 Bn−1

)

where y ∈ Cn−1 and Bn−1 ∈ C(n−1)×(n−1). From the induction hypothesis there exists a unitary
Qn−1 ∈ C(n−1)×(n−1) such that Q∗

n−1Bn−1Qn−1 is upper triangular. Choose

Q = X

(
1 0
0 Qn−1

)

and note that Q is unitary and

Q∗BQ =

(
1 0
0 Q∗

n−1

)
X∗BX

(
1 0
0 Qn−1

)

=

(
1 0
0 Q∗

n−1

)(
λ1 y∗

0 Bn−1

)(
1 0
0 Qn−1

)

=

(
λ1 y∗Qn−1

0 Q∗
n−1Bn−1Qn−1

)

where the last matrix is an upper triangular matrix because Q∗
n−1Bn−1Qn−1 is upper triangular.

End of Proof.

Regarding examples, the Schur form is typically achieved by an efficient implementation of a
very simple iteration. Namely, compute the QR factorization of B, reverse the factors and repeat.
In symbols,

B1 = B, [Q1, R1] = qr(B1), B2 = R1Q1, [Q2, R2] = qr(B2), . . . (11.48)

and we repeat until Bk is triangular. This procedure is called the QR method for determining
the eigenvalues of B. It is far from easy to see why these iterates should become triangular. It is
however easy to see that they are each similar to one another, for

Bk+1 = RkQk = QT
kQkRkQk = QT

kBkQk.

Lets run through these steps for

B =




16 12 8 4
−4 2 −7 −6
2 4 16 8
−1 −2 −3 6


 . (11.49)

Its resolvent is

(sI − B)−1 =
1

s− 10




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


+

1

(s− 10)2




6 12 8 4
−4 −8 −7 −6
2 4 6 8
−1 −2 −3 −4



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and so λ1 = 10 is the sole eigenvalue. For practical purposes we have terminated (11.48) when the
Eigenerror, max |diag(Bk)− 10|, was less than 0.01. This required 1000 iterations, see Figure 11.2,
and resulted in the Schur form

B1000 =




10.0100 0.0298 −10.4400 −20.0570
0.0000 10.0000 3.4933 −7.1777
0.0000 0.0000 10.0000 −0.0205
0.0000 0.0000 −0.0000 9.9900


 .
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Figure 11.2. The convergence of the naive QR algorithm, (11.48), to a Schur form of (11.49).

11.5. The Jordan Canonical Form∗

To the insufficient number of eigenvectors we add carefully constructed generalized eigenvectors
from R(Pj). As this space is filled out, recall Prop. 11.4, by null spaces of powers of (B − λjI),
we will construct Jordan bases for the R(Pj) along the lines used in the Jordan decomposition of
nilpotents in §4.4.

As a warm up lets restrict ourselves to matrices B with a single distinct nonsemisimple eigenvalue,
i.e., h = 1 and p1 > 1. We first record the dimensions

dj = dimN ((B − λ1I)
j), j = 1, . . . , p1,

and proceed to

Step 1’: construct a basis {v1p1 , v2p1, · · · , v
cp1
p1 } for N ((B − λ1I)

p1) mod N ((B − λ1I)
p1−1), where

vkp1 is the coordinate vector for the kth pivot column of (B − λ1I)
p1−1.

Step 2: Note that (B− λ1I)v
j
p1

∈ N ((B−λ1I)
p1−1) and that {(B−λ1I)v

j
p1

: j = 1, . . . , cp1} is lin-

early independent modN ((B−λ1I)p1−2). We complete this to a basis by appending {v1p1−1, . . . , v
cp1−1

p1−1 }.
Step 3: Repeat Step 2, with p1 replaced by p1 − 1.

On completion we arrange the basis vectors by increasing block size

X = {v11, . . . , vc11 , (B − λ1I)v
1
2, v

1
2, . . . , (B − λ1I)v

c2
2 , v

c2
2 , . . . ,

(B − λ1I)
i−1v1i , . . . , v

1
i , . . . , (B − λ1I)

i−1vcii , , . . . , v
ci
i , . . .},

and observe the chain/block structure inherent in the columns of X . Namely, for the 1-blocks

Bxj = λ1xj , j = 1, . . . , c1,
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and for 2-blocks,

Bxj = λ1xj and Bxj+1 = λ1xj+1 + xj , j = c1 + 1, . . . , c1 + c2

and for 3-blocks,

Bxj = λ1xj , Bxj+1 = λ1xj+1 + xj , Bxj+2 = λ1xj+2 + xj+1, j = c1 + 2c2, . . . , c1 + 2c2 + c3

and so on. It follows that BX = XJ where J is the block diagonal matrix begining with c1 zeros,
then c2 blocks of size 2, then c3 blocks of size 3 up through cm blocks of size m. Each block has λ1
along its diagonal and ones along its superdiagonal. The chain numbers, cj , are determined by the
null space dimensions, dj, precisely as in (4.14).

Let’s take the concrete example of (11.49). The associated null spaces have dimensions d1 = 2
and d2 = 4 and so we expect to build 2 chains of length two. Regarding the pivot columns of
(B − λ1I) we note, either directly or via (11.22), that (B − λ1I) = D1. As columns 1 and 3 are
pivot columns of D1 it follows from Step 1’ in that

v12 = (1 0 0 0)T and v22 = (0 0 1 0)T

comprise a basis for N ((B − λ1I)
2) mod N (B − λ1I). We then build

X = [(B − λ1I)v
1
2 v

1
2 (B − λ1I)v

2
2 v

2
2] =




6 1 8 0
−4 0 −7 0
2 0 6 1
−1 0 −3 0


 (11.50)

and find that

X−1BX = J =




10 1 0 0
0 10 0 0
0 0 10 1
0 0 0 10


 ,

as predicted.
In the general case we merely repeat this procedure for each eigenvalue. The basis vectors for

the distinct λj and λk are independent from another because PjPk = 0.

Proposition 11.7, If B ∈ Cn×n then B is similar to a Jordan matrix J ∈ Cn×n. In particular,
there exists an X (comprised of generalized eigenvectors of B) for which

X−1BX = J. (11.51)

The structure of J is determined by the eigenvalues of B, denoted λ1, λ2, . . . , λh, their associated
orders as poles of the resolvent of B, denoted p1, p2, . . . , ph, and finally by their associated nullities
dj,k = dimN ((B − λk)

j) for k = 1, . . . , h and j = 1, . . . , pk. In particular, for each k = 1, . . . , h,
there will be d1,k Jordan blocks with λk on the diagonal. Among these there will be cj,k blocks
of size j, where j = 1, . . . , pk and c:,k = Spkd:,k where Spk is the hanging chain matrix of (4.14).
The sum of the sizes of all Jordan blocks associated with λk is mk = dimR(Pk), the algebraic
multiplicity of λk.
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Let us construct the Jordan form of

B =




3 2 3 5 −7 4 −9
1 4 4 6 −7 4 −10
1 1 5 5 −6 4 −8
1 3 5 11 −11 7 −15
1 3 6 10 −10 8 −17
1 1 3 6 −7 7 −9
1 1 2 4 −5 3 −4



. (11.52)

Its resolvent is

(sI −B)−1 =
1

s− 1
P1 +

1

s− 2
P2 +

1

s− 3
P3 +

1

(s− 2)2
D2 +

1

(s− 3)2
D3 +

1

(s− 3)3
D2

3,

where the eigenprojections, eigennilpotents and their nonzero powers are

P1 =




−1 −2 −3 −5 7 −4 9
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 −2 −3 −5 7 −4 9
−1 −2 −3 −5 7 −4 9
0 0 0 0 0 0 0
0 0 0 0 0 0 0



, P2 =




2 2 3 5 −7 4 −9
0 0 −1 −2 2 −1 3
0 0 0 −1 1 −1 2
1 1 2 3 −4 2 −5
1 1 1 2 −3 2 −4
0 0 −1 −2 2 −1 3
0 0 0 −1 1 −1 2




and

D2 =




0 0 0 0 0 0 0
1 1 2 3 −4 2 −5
1 1 2 3 −4 2 −5
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 1 2 3 −4 2 −5
1 1 2 3 −4 2 −5



, P3 =




0 0 0 0 0 0 0
0 1 1 2 −2 1 −3
0 0 1 1 −1 1 −2
0 1 1 3 −3 2 −4
0 1 2 3 −3 2 −5
0 0 1 2 −2 2 −3
0 0 0 1 −1 1 −1




and

D3 =




0 0 0 0 0 0 0
0 0 1 1 −1 1 −2
0 0 0 1 −1 1 −1
0 0 1 1 −1 1 −2
0 0 1 2 −2 2 −3
0 0 0 1 −1 1 −1
0 0 0 0 0 0 0




and D2
3 =




0 0 0 0 0 0 0
0 0 0 1 −1 1 −1
0 0 0 0 0 0 0
0 0 0 1 −1 1 −1
0 0 0 1 −1 1 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0



,

corresponding to the three eigenvalues, λj = j, and their respective pole orders, µj = j. The Jordan
Form is fully determined by the sequence of dimensions

d1,1 = dimN (B − I) = 1,

d1,2 = dimN (B − 2I) = 2, d2,2 = dimN ((B − 2I)2) = 3,

d1,3 = dimN (B − 3I) = 1, d2,3 = dimN ((B − 3I)2) = 2, d3,3 = dimN ((B − 3I)3) = 3.

In particular, d1,1 = 1 specifies that there is one Jordan block associated with λ1. The size of the
block is p1 = 1. d1,2 = 2 specifies that there are two Jordan blocks associated with λ2. Their sizes
are d2,2 − d1,2 = 1 and p2 = 2. d1,3 = 1 specifies that there is one Jordan block associated with λ3.
The size of the block is p3 = 3. As a result B is similar to

J =




1 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 1 0 0 0
0 0 0 2 0 0 0
0 0 0 0 3 1 0
0 0 0 0 0 3 1
0 0 0 0 0 0 3




(11.53)
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and the transformation matrix is X = [X1, X2, X3] where

X1 = v11,1, X2 = {v11,2, (B−λ2I)v12,2, v12,2} and X3 = {(B−λ3I)2v13,3, (B−λ3I)v13,3, v13,3} (11.54)

Here v11,1 is a basis for N (B − λ1I),

v11,1 = (1 0 0 1 1 0 0)T ,

v12,2 is a basis for N ((B − λ2I)
2) mod N (B − λ2I), and v13,3 is a basis for N ((B − λ3I)

3) mod

N ((B − λ3I)
2). Recalling Step 1’ and (B − λ2I)P2 = D2 we obtain v12,2 = P2e2 where e2 is the

coordinate vector of the pivot column of D2. As column 1 is the pivot column of D2 we find

v12,2 = (2 0 0 1 1 0 0)T and (B − λ2I)v
1
2,2 = (0 1 1 0 0 1 1)T .

These two lie, by construction in N (B−λ2I)
2. We recognize that v11,2 = (1 0 1 1 0 0 1)T completes

the basis of N (B − λ2I)
2.

Similarly, as (B − λ3I)
2P3 = D2

3 we obtain v13,3 = P3e3 where e3 is the coordinate vector of the

pivot column of D2
3. As column 4 is the pivot column of D2

3 we find

v13,3 = (0 2 1 3 3 2 1)T , (B − λ3I)v
1
3,3 = (0 1 1 1 2 1 0)T and (B − λ3I)

2v13,3 = (0 1 0 1 1 0 0)T .

These vectors arranged, per (11.54), indeed deliver X−1BX = J for the B and J of (11.52) and
(11.53).

As each matrix is similar to a triangular matrix with its eigenvalues, repeated by their algebraic
multiplicity, along the diagonal, we may use the product formulas for the determinant and trace to
establish

Corollary 11.8. In the language of Prop. 11.6,

det(B − zI) =
h∏

j=1

(λj − z)mj and tr(B) =
h∑

j=1

mjλj . (11.55)

The first statement in (11.55) finally brings us to a concise formulation of the characteristic
polynomial,

χB(z) ≡ det(B − zI) =

h∏

j=1

(λj − z)mj (11.56)

first encountered in §8.2 during our introduction to dynamics.

We close with two applications of a generalized form of Cauchy’s Integral Formula. If C is a
closed curve that strictly contains the eigenvalues of B and f is differentiable on and in C then

f(B) =
1

2πi

∫

C

(zI − B)−1f(z) dz

=
1

2πi

h∑

j=1

∫

Cj

(
f(z)

z − λj
Pj +

mj−1∑

k=1

f(z)

(z − λj)k+1
Dk
j

)
dz

=

h∑

j=1

(
f(λj)Pj +

mj−1∑

k=1

1

k!

dkf(λj)

dzk
Dk
j

)
.

(11.57)
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As dkχB(λj)/dz
k = 0 for each j and 0 ≤ k < mj we have proven the Cayley–Hamilton Theorem,

Proposition 11.9. Cayley–Hamilton Theorem. Each matrix satisfies its own characteristic
polynomial, i.e., χB(B) = 0.

Our second application of (11.57) is the representation of exp(Bt) as the Laplace Transform of
the resolvent

exp(Bt) =
1

2πi

∫

C

(zI − B)−1 exp(zt) dz =
h∑

j=1

exp(λjt)

(
Pj +

mj−1∑

k=1

tk

k!
Dk
j

)
. (11.58)

With this representation we return to the example (11.49) and compute

exp(Bt) = exp(10t)(I + tD1) = exp(10t)




1 + 6t 12t 8t 4t
−4t 1− 8t −7t −6t
2t 4t 1 + 6t 8t
−t −2t −3t 1− 4t


 .

11.6. Positive Matrices and the PageRank Algorithm∗

The Jordan form, Eq. (11.51), is canonical in the sense that it is the simplest spectral form
that an arbitrary square matrix can take. Of course if we work over a class of more structured
matrices we may hope that this structure is in some sense inherited by the associated eigenvalues
and eigenvectors. This is in fact the theme for the remaining chapters of this book. We kick it off
here with a focus on the dramatic implications of the spectra of positive matrices.

One key to the rapid search through a large and diverse set of documents is to have an efficient
ordering, or ranking, of their utility or reliability. Rather than applying some external measure,
and so setting oneself up as the arbiter of truth and utility, the best search tools use an internal
measure and rank documents based upon the number of times they are referenced by other high
ranking documents. This circular definition is resolved with a little linear algebra. To see this lets
begin with the five documents in Figure 11.3.

1 2

34

5

Figure 11.3. Among the five documents, document 1 cites documents 2 and 5, document 2 cites
only document 5, and so on.

We quantify the citations depicted in Figure 11.3 by scaling the impact of a citation by the total
number of citations made by that document. Hence documents 5 and 2 each receive one half of the
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rank of document 1 while document 5 receives all of the rank of document 2. If xj denotes the rank
of document j we may then interpret Figure 11.3 to say

x1 = x4/2

x2 = x1/2 + x3

x3 = x4/2 + x5/2

x4 = x5/2

x5 = x1/2 + x2.

This is best captured as
Ax = x. (11.59)

where A is the citation matrix

A =




0 0 0 1/2 0
1/2 0 1 0 0
0 0 0 1/2 1/2
0 0 0 0 1/2
1/2 1 0 0 0




(11.60)

associated with Figure 11.3. The self-referential nature of our preliminary definition of rank is
echoed in Eq. (11.59) – which states that the rank vector is a “self” (i.e., “eigen”) vector of the
citation matrix. This however comes with a strong twist – x is not just any eigenvector of A, it is the
eigenvector associated with the eigenvalue 1. Does every citation matrix have 1 as an eigenvalue? If
so is it paired with a unique (positive) eigenvector? If so, how can we compute it effectively (when
faced with tens of millions of documents)? With a slightly more robust definition we will see that
each of these questions can be answered in the affirmative. Before working out the general theory
lets finish off this example by noting that 1 is a simple eigenvalue of (11.60) and that it has the
positive eigenvector

x = (2, 7, 6, 4, 8) (11.61)

We glean from this x that the documents in Figure 11.3 should be ranked, in order of decreasing
importance as 5, 3, 2, 4, 1. This should coarsely jibe with your intuition, the top three documents
each receive 2 citations while the bottom two each receive only one. That document 5 is clearly
better than document 2 which is clearly more important than document 3 can only be discerned
by consider all of the documents simultaneously – and this is precisely what is done in (11.59).

In order to see that not all document graphs produce viable, in the sense of (11.59), citation
matrices we need only reverse two links in Figure 11.3.

1 2

34

5
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Figure 11.4. A reversal, with respect to Figure 11.3, of the citations between documents 2 and
3 and documents 4 and 5.

The citation matrix for Figure 11.4

A =




0 0 0 1/3 0
1/2 0 0 0 0
0 1/2 0 1/3 1
0 0 0 0 0
1/2 1/2 0 1/3 0




(11.62)

has no chance of satisfying (11.59), for ALL of its eigenvalues are zero – in fact it is nilpotent!,
A5 = 0. Of course this graph is “degenerate” in the sense that document 3 makes no citations and
document 4 receives no citations. The most unbiased way to rectify this is to have every document
cite every other document but with weights that do not swamp those established by the original
citation matrix. This is accomplished by instead studying

B = (1− t)A+ tK (11.63)

where t is a tuning parameter and K is the kumbaya matrix

K =
1

n



1 1 · · · 1
...

...
. . .

...
1 1 · · · 1


 (11.64)

where each of the n documents shares one nenth of its rank with every other document, including
itself. If we apply this strategy to the A in (11.62) with t = 0.15 we find that B has one simple
positive eigenvalue, λ1 ≈ 0.56, and a positive eigenvector that leads to the reasonable ranking
(3, 5, 2, 1, 4). That this λ1 falls short of 1 is a reflection of the fact that the dangling document,
3, contributes to a column sum of t in B while all other column sums are 1.

We consider B ∈ Rn×n that are positive in the sense that each and every element of B is positive,
i.e., strictly greater than 0. Let us write B > 0 to mean that every element of B is strictly greater
than 0 and x ≥ 0 to mean that every element of x is greater than or equal to 0. It will be useful to
make use of the vector and matrix norms

‖x‖1 =
n∑

i=1

xi and ‖B‖1 =
n∑

i=1

n∑

j=1

bi,j

and the inequality
‖Bx‖1 ≤ ‖B‖1‖x‖1.

On hunting for a positive eigenvalue of B it make sense to search among those numbers in

L ≡ {λ ≥ 0 : ∃ x ≥ 0 such that Bx ≥ λx}.

We note that L is nonempty, for 0 ∈ L, and bounded above, for if Bx ≥ λx then ‖B‖1‖x‖1 ≥
‖Bx‖1 ≥ λ‖x‖1 and so λ ≤ ‖B‖1. It therefore makes sense to consider

λ+ = sup
λ∈L

λ. (11.65)
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Proposition 11.10. Perron’s Theorem. If each element of B ∈ Rn×n is positive then the λ+

in (11.65) is an eigenvalue of B. It is positive, its geometric and algebraic multiplicities are each
one and it has an associated positive eigenvector.

Proof: Choose λj ∈ L such that λj → λ+ and denote by xj ≥ 0 a vector for which Bxj ≥ λjxj
and ‖xj‖1 = 1. As the xj comprise a bounded sequence it follows from Proposition 1.3 that they
possess a subsequence, {xjk} that converges to a limit x+. We note that x+ ≥ 0 and ‖x+‖1 = 1 and
Bx+ ≥ λ+x+. To see that λ+ > 0 set

cj = min
i
bi,j

and note that Bej ≥ cjej . So
λ+ ≥ max

j
cj.

If strict inequality holds in Bx+ ≥ λ+x+ at say the first element then

(Bx+)1 − λ+x+1 = d1 > 0

then setting

y ≡ x+ + (d1/λ
+)e1 and ε ≡ d1

λ+
mini bi,1
maxi yi

produces By ≥ (ε+ λ+)y contrary to the maximality of λ+. Hence λ+ and x+ are an eigenpair for
B. Now Bx+ = λ+x+ together with B > 0 and λ+ > 0 imply that x+ > 0.

To see that λ+ is the largest eigenvalue of B suppose that By = λy and |λ| ≥ λ+. We denote by
|y| the vector of magnitudes of elements of y. From By = λy and B > 0 we glean

B|y| ≥ |By| = |λy| = |λ||y| (11.66)

and so conclude (as |y| is a contender in L) that |λ| ≤ λ+. Together with the opening supposition
of the clause it follows that |λ| = λ+ and that equality must hold in (11.66) which implies that |y| is
a second eigenvector of B with eigenvalue λ+. It follows that x+ − ε|y| is also such an eigenvector.
If x+ and |y| are not colinear then there exists a smallest positive value of ε such that one (or more)
elements of x+ − ε|y| are zero while the remainder are positive. But this would contradict

B(x+ − ε|y|) = λ+(x+ − ε|y|)

at those elements, hence |y| and x+ are colinear and so λ+ is geometrically simple.
If its algebraic multiplicity exceeds one then, by Proposition 11.4, there exists a vector w such

(B − λ+I)kw = 0 and (B − λ+I)k−1w 6= 0

for some k ≥ 2. This states that (B − λ+I)k−1w is an eigenvector associated with λ+ and so is a
multiple of x+. Without loss we can assume this multiple is one, hence

x+ = (B − λ+I)k−1w.

If we then set z = (B − λ+I)k−2w then (B − λ+I)z = x+. This now reads

Bz = λ+z + x+ > λ+z

which leads to B|z| > λ+|z| in contradiction of the definition of λ+. End of Proof.
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This now guarantees the existence of a unique rank vector for every generalized citation matrix,
(11.63). We leave it as a useful exercise to prove that if every column sum of B is one then λ+ = 1.

Regarding an effective means of estimating x+ we note that our spectral representation takes on
a beautiful form when λ+ = 1. Namely

B = P+ +
h∑

j=2

(λjPj +Dj), (11.67)

where P+ is projection onto the desired x+. As each |λj| < 1 and each Dj is nilpotent and
P+Pj = P+Dj = 0 it follows that

P+ = lim
k→∞

Bk. (11.68)

In practice this suggests the very simple algorithm: let e be the vector of all ones and compute

Be, BBe, BBBe, . . .

until convergence to x+.

11.7. Notes and Exercises

We have followed Kato (1980). For more on the pagerank problem please consult Bryan and
Leise (2006).

1. Use (3.32) to build the partial fraction expansion of the resolvent of the rank one matrix, uvT ,
where u and v lie in Rn.

(a) Show that if uTv = 0 then uvT is nilpotent and

(sI − uvT )−1 =
1

s
I +

1

s2
uvT .

(b) Show that if uTv 6= 0 then

(sI − uvT )−1 =
1

s

(
I − uvT

uTv

)
+

1

s− uTv

uvT

uTv
.

2. Argue as in Prop. 11.1 that if j 6= k then DjPk = PjDk = 0.

3. Argue from (11.22) and P 2
j = Pj that DjPj = PjDj = Dj. Use the latter to prove that

R(Dj) ⊂ R(Pj). From this result deduce that µj, the multiplicity of λj as a pole of the
resolvent, can not exceed mj , the dimension of R(Pj).

4. Show that A and AT have the same eigenvalues and same multiplicities.

5. Use Corollary 4.14 and Eq. (11.17) and Eq. (11.56) to establish

tr (zI −B)−1 =
h∑

j=1

mj

z − λj
=
χ′
B(z)

χB(z)
. (11.69)

209



6. Let us consider a semisimple matrix with a multiple eigenvalue,

B =




4 0 0
−1 2 −3
2 4 10




(i) Find the partial fraction expansion of its resolvent. (ii) From the projections in (i) extract
three linearly independent eigenvectors and use these to diagonalize B.

7. Starting from the representation (11.57) use the second resolvent identity to confirm that
(exp(Bt))′ = B exp(Bt).

8. Note that −B has the same spectral representation as B (except for a change in sign in the
eigenvalues). Construct exp(−Bt) and show that it is the inverse of exp(Bt).

9. Show that exp(BT t) = (exp(Bt))T .

10. Regarding (11.45), note that exp(Bt)T exp(Bt) = I. Show that this is a direct consequence of
BT = −B.

11. Show that exp((A +B)t) = exp(At) exp(Bt) if and only if AB = BA.

12. We use the Schur form to diagonalize normal matrices. A matrix B ∈ Cn×n is said to be
normal when BB∗ = B∗B. This is a natural extension of the class of Hermitian matrices.

(i) Use (11.47) to write B = QUQ∗ where Q is unitary and U is upper triangular. Taking
adjoints of both sides conclude that B∗ = QU∗Q∗.

(ii) Use (i) to show that if B is normal then so is U .

(iii) Show that the only normal triangular matrices are diagonal and conclude from (ii) that if
B is normal then there exists a unitary Q and diagonal Λ such that Q∗BQ = Λ.

(iv) Finally establish the converse: If there exists a unitary Q and diagonal Λ such that
B = QΛQ∗ then B is normal.

13. The Frobenius norm of B ∈ Cn×n is ‖B‖F ≡
√

tr(BB∗). Use the Schur Form to establish

n∑

j=1

|λj|2 ≤ ‖B‖2F , (11.70)

where the λj are the eigenvalues of B. Show that equality holds in Eq. (11.70) if and only if
B is normal.

14. (C-K Li) Given A ∈ Cn×n we study its numerical range:

W (B) ≡ {x∗Bx : x ∈ Cn, ‖x‖ = 1}. (11.71)

(i) Use the result of the previous exercise to prove that if B is normal and n = 2 then W (B)
is the line segment in C between the two eigenvalues of B.

(ii) Show that for every B and scalar a and b that W (aB − bI) = aW (B)− b.
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(iii) Given a nonnormal B and n = 2 set C = B − (trB)I/2. Show that trC = 0 and conclude
that the two eigenvalues of C are equal and opposite, say ±λ. If λ = 0 then use the Schur
form to argue that C is unitarily similar to

(
0 u
0 0

)

and conclude that W (C) = {ux1x2 : x1, x2 ∈ C, |x1|2+ |x2|2 = 1} is the circle about the origin
of radius |u|. Conclude from (ii) that W (B) is the circle of radius u centered at (trB)/2.

(iv) Finally, if in part (iii) λ 6= 0 set D = C/λ and use the Schur form to conclude that D is
unitarily similar to

E =

(
1 2c
0 −1

)

with c > 0.

15. Discuss Hessenberg and QR.

16. Use Cor. 11.8 to conclude that

det exp(B) = exp(tr(B)).

17. We have seen a natural means for attaching a polynomial to a matrix. We often have the need
to go the other way round. Suppose

a(x) = xn + an−1x
n−1 + an−2x

n−2 + · · · a1x+ a0

and consider the companion matrix

C(a) =




0 1 0 · · · 0
0 0 1 0
...

...
−a0 −a1 −a2 · · · −an−1




and prove that
det(xI − C(a)) = a(x).

Hint: Row reduce xI−C(a) and compute the product of its pivots. Note: This is howMatlab

computes roots of polynomials.

18. We will now use companion matrices and the Cayley–Hamilton Theorem to derive Newton’s
Identities between the roots xj and the coefficients of polynomial p, via the sums of powers

sk =
n∑

j=1

xkj .

(i) Prove that sk = tr(C(p)k).

(ii) Suppose k > n and use Cayley-Hamilton to conclude that tr(Ck−np(C)) = 0 then expand
this identity to arrive at the high powered Newton Identity

sk + an−1sk−1 + · · ·+ a0 = 0 (k > n). (11.72)
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(iii) We can use p(C) = 0 to write p(xI) = p(xI) − p(C). Expand and rearrange the right
hand side to arrive at

p(x) = (x−C)[xn−1+(C+an−1)x
n−2+(C2+an−1C+an−2)x

n−3+· · ·+(Cn−1+an−1C
n−2+· · ·+a1)].

(iv) Use part (iii) to arrive at

p(x)tr(x− C)−1 = nxn−1 + tr(C + an−1)x
n−2+

tr(C2 + an−1C + an−2)x
n−3 + · · ·+ tr(Cn−1 + an−1C

n−2 + · · ·+ a1)

(v) Use part (iv) and Eq. (11.69) to conclude that

s1x
n−2+(s2+an−1s1)x

n−3+· · ·+(sn−1+an−1sn−2+· · ·+a2s1) = −an−1x
n−2−2an−2x

n−3−· · ·−2a2x−a1.
Now identify coefficients of like powers and conclude that

sk + an−1sk−1 + · · ·+ an−k+1s1 = −kan−k (1 ≤ k ≤ n) (11.73)

19. We would now like to argue, by example, that the Fourier Matrix of Exer. 7.7 diagonalizes
every circulant matrix. We call this matrix

B =




2 8 6 4
4 2 8 6
6 4 2 8
8 6 4 2




circulant because each column is a shifted version of its predecessor. First compare the results
of eig(B) and F ∗

4B(:, 1) and then confirm that

B = F4diag(F
∗
4B(:, 1))F ∗

4 /4.

Why must we divide by 4? Now check the analogous formula on a circulant matrix in R5×5 of
your choice. Submit a marked-up diary of your computations.

20. Let us return to Exer. 6.7 and study the eigenvalues of B as functions of the damping d when
each mass and stiffness is 1. In this case

B =

(
0 I
−S −dS

)
where S =




2 −1 0
−1 2 −1
0 −1 2


 .

(i) Write and execute a Matlab program that plots, as below, the 6 eigenvalues of B as d
ranges from 0 to 1.1 in increments of 0.005.
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Figure 11.5. Trajectories of eigenvalues of the damped chain as the damping increased.

(ii) Argue that if [u; v]T is an eigenvector of B with eigenvalue λ then v = λu and −Su−dSv =
λv. Substitute the former into the latter and deduce that

Su =
−λ2

1 + dλ
u.

(iii) Confirm, from Exercise 7.10, that the eigenvalues of S are µ1 = 2 +
√
2, µ2 = 2 and

µ3 = 2−
√
2 and hence that the six eigenvalues of B are the roots of the 3 quadratics

λ2 + dµjλ+ µj = 0, i.e., λ±j =
−dµj ±

√
(dµj)2 − 4µj
2

.

Deduce from the projections in Exer. 7.10 the 6 associated eigenvectors of B.

(iv) Now argue that when d obeys (dµj)
2 = 4µj that a complex pair of eigenvalues of B collide

on the real line and give rise to a nonsemisimple eigenvalue. Describe Figure 11.5 in light of
your analysis.

21. Regarding Perron’s Theorem, Prop. 11.10, please show that if every column sum of B is one
then λ+ = 1.

22. Suppose that B > 0 and that λ+ is its associated Perron eigenvalue. Show that the resolvent
(λI − B)−1 > 0 if and only if λ > λ+. Hint: Eq. (11.7).
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12. The Hermitian Eigenvalue Problem

In the previous chapter we arrived at the Spectral Representation of a general complex square
matrix, and interpreted it as diagonal decomposition in the case that the matrix was semisimple.
That condition was fairly technical and far from easy to check and so we devote an entire chapter
to a very large, very important class of semisimple matrices, namely matrices that coincide with
their conjugate transposes. For short, we call such matrices Hermitian. Note that real Hermitian
matrices are symmetric.

We show that if B = B∗ then each eigenvalue, λj, is real, each eigenprojection, Pj, is Hermitian
(and therefore orthogonal) and each eigennilpotent, Dj, vanishes. We saw a concrete example of
this in Exer. 9.16.

We next show how to construct an orthonormal basis for each R(Pj), how to characterize the
λj as extrema of Rayleigh quotients and how to estimate the λj via powers of B. We also study
how eigenvalues move when the underlying matrix is perturbed and we close with applications to
Molecular Orbital Theory and the optimal damping of mechanical networks.

12.1. The Spectral Representation

We establish the three key properties, one at a time.

Proposition 12.1. If B = B∗ then the eigenvalues of B are real.

Proof: We suppose that λ and x comprise an eigenpair of B, i.e., Bx = λx. On taking the conjugate
transpose of each side we find

Bx = λx and x∗B = λx∗

We now multiply the first by x∗ from the left and the second by x from the right and find

x∗Bx = λ‖x‖2 and x∗Bx = λ‖x‖2.

It follows that λ‖x‖2 = λ‖x‖2 and, as ‖x‖ > 0, that λ = λ. End of Proof.

In order to move onto the eigen–projections and –nilpotents it will help to recall that the con-
jugate transpose commutes with inversion. More precisely, the conjugate transpose of each side of
the identity A∗(A∗)−1 = I reveals ((A∗)−1)∗A = I. That is ((A∗)−1)∗ = A−1. Now the conjugate
transpose of each side of this reveals

(A∗)−1 = (A−1)∗. (12.1)

With this we can establish

Proposition 12.2. If B is Hermitian then each eigenprojection, Pj , and each eigennilpotent, Dj,
is Hermitian.

Proof: From (12.1) we learn that

{(sI −B)−1}∗ = {(sI −B)∗}−1 = (sI − B)−1
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Next, as each eigenvalue is real we may choose each curve Cj to be a circle centered on the real
line. Hence

P ∗
j =

(
1

2πi

∫

Cj

(sI − B)−1 ds

)∗

=
−1

2πi

∫

Cj

(sI − B)−1 ds

=
1

2πi

∫

Cj

(sI − B)−1 ds = Pj,

because integration of s merely reverses the curve’s orientation. By the same token, we find that
each D∗

j = Dj. End of Proof.

The next result will banish the nilpotent component.

Proposition 12.3. The zero matrix is the only Hermitian nilpotent matrix.

Proof: Suppose that D = D∗ and Dm = 0 for some positive integer m. We show that Dm−1 = 0 by
showing that every vector lies in its null space. To wit, if x ∈ Cn then

‖Dm−1x‖2 = x∗(Dm−1)∗Dm−1x

= x∗Dm−1Dm−1x

= x∗Dm−2Dmx

= 0.

As Dm−1x = 0 for every x it follows (recall Exer. 4.11) that Dm−1 = 0. Continuing in this fashion
we find Dm−2 = 0 and so, eventually, D = 0. End of Proof.

We have now established the key result of this chapter.

Proposition 12.4. If B is Hermitian then

B =

h∑

j=1

λjPj (12.2)

where the λj are real and the Pj are orthogonal projections that sum to the identity and whose
pairwise products vanish.

The bulk of the symmetric matrices constructed in Chapters 2 and 3 were also positive definite,
i.e., they obeyed

x∗Bx > 0, ∀ x ∈ Cn.

It follows that the eigenvalues of such a matrix are positive and this in turn permits us to construct
its square root,

Proposition 12.5. If B ∈ Rn×n is Hermitian and positive definite with eigenvalues, λj, and
eigenprojections, Pj, then

B1/2 ≡
h∑

j=1

√
λjPj

is Hermitian and positive definite and obeys B1/2B1/2 = B.
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In applications one often is confronted with the so-called generalized eigenproblem

Su = λMu (12.3)

where S and M are symmetric and M is positive definite. For example, the dynamics of the chain
Figure 3.1, with uniform stiffness, k1 = k2 = k3 = k4 = 1, but nonuniform mass, mj = j requires
the solution of (12.3) with

S =




2 −1 0
−1 2 −1
0 −1 2


 and M =



1 0 0
0 2 0
0 0 3


 .

The eigenvalues in the this case are the poles of the generalized resolvent (S − λM)−1 or the zeros
of the associated det(S − λM). In this case

λ1 =
4 +

√
10

3
, λ2 = 1, λ3 =

4−
√
10

3
,

and the jth eigenvector spans N (S − λjM). Rather than producing an associated generalized
spectral representation based on this generalized resolvent we instead note that Prop. 12.5 permits
us to write (12.3) in standard form. Namely, from

Su = λM1/2M1/2u

we multiply on the left by M−1/2 and set q = M1/2u and arrive at the standard symmetric eigen-
problem,

Bq = λq where B =M−1/2SM−1/2. (12.4)

For the example above

B =




2 −1/
√
2 0

−1/
√
2 1 −1/

√
6

0 −1/
√
6 2/3


 .

12.2. Orthonormal Diagonalization of Hermitian Matrices

It follows, as in §11.3, that each Hermitian matrix, B, has a full set of eigenvectors that may be
used to diagonalize B, as in (11.32). As our Pj are in fact orthogonal projections we may now argue
that we may diagonalize B with an orthonormal transformation. If x ∈ R(Pj) and y ∈ R(Pk) then

x∗y = (Pjx)
∗Pky = x∗P ∗

j Pky = x∗PjPky = 0.

and hence the individual eigenbases

Ej ≡ [ej,1 ej,2 . . . ej,nj
]

are orthogonal to one another. In the simple case where each nj = 1 we will have a full set of
orthogonal eigenvectors. For example, we return to Exer. 9.16 and note that eigenvectors may be
read from the columns of the associated projections. In particular

e1 =




1

−
√
2

1


 , e2 =




1
0
−1


 and e3 =




1√
2
1



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are eigenvectors of

B =




2 −1 0
−1 2 −1
0 −1 2




associated with the eigenvalues λ1 = 2+
√
2, λ2 = 2 and λ3 = 2−

√
2. The ej are clearly orthogonal

to one another, and upon simple normalization, i.e., q1 = e1/2, q2 = e2/
√
2 and q3 = e3/2 we note

that the matrix

Q = [q1, q2, q3] =




1/2 1/
√
2 1/2

−1/
√
2 0 1/

√
2

1/2 −1/
√
2 1/2




enjoys both the lovely property Q∗Q = I and

Q∗BQ = Λ =



2 +

√
2 0 0

0 2 0

0 0 2−
√
2


 ,

the diagonal matrix of eigenvalues. A matrix Q for which Q∗Q = I is called unitary. A real
unitary matrix is called orthogonal. A unitary square matrix is easily inverted, namely Q−1 = Q∗.
We have in fact proven, and illustrated, that every Hermitian matrix with simple eigenvalues may
be diagonalized by a unitary matrix of eigenvectors.

So let us move toward the general case with the loop matrix

B =




2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2


 (12.5)

and recognize in its resolvent

(sI − B)−1 =
1

s
P1 +

1

s− 2
P2 +

1

s− 4
P3,

where

P1 =
1

4




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 , P2 =

1

2




1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1


 and P3 =

1

4




1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1




and eigenvalue λ1 = 0 with a 1–dimensional eigenspace, an eigenvalue λ2 = 2 with a 2–dimensional
eigenspace, and an eigenvalue λ3 = 4 with a 1–dimensional eigenspace. One easy way of seeing the
dimensions is via nj = mj = tr(Pj). In any event, we proceed as above to read eigenvectors from
the first nj columns of Pj . In particular, E = [E1, E2, E3] where

E1 =




1
1
1
1


 , E2 =




1 0
0 1
−1 0
0 −1


 and E3 =




1
−1
1
−1


 .
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As expected the ET
j Ek = 0 when j 6= k. As a perhaps lucky bonus we recognize that the two

columns of E2 are also orthogonal to one another. As a result the normalized collection

Q = [E1/2, E2/
√
2, E3/2]

is an orthonormal diagonalizer of the B in (12.5). It remains only to show that we can always
engineer such luck.

By constructing an orthogonal basis {qj,k : 1 ≤ k ≤ nj} for each R(Pj), collecting the basis
vectors in Qj = [qj,1 qj,2 · · · qj,nj

] and assembling the Qj into a single square unitary matrix
Q = [Q1 · · · Qh], we arrive at

B = QΛQ∗ and Q∗BQ = Λ (12.6)

where Λ is the diagonal matrix of eigenvalues of B, ordered as in the construction of Q, and repeated
by their multiplicity.

Finally, let us return to the generalized eigenproblem, (12.3). Recall that λ and u are an eigenpair
for (S,M) if and only if λ and q =M1/2u are an eigenpair for B =M−1/2SM−1/2. The orthonormal-
ity of Q = (q1, q2, . . . , qn) then implies that the matrix of (S,M) eigenvectors, U = (u1, u2, . . . , un),
obeys

I = Q∗Q = (M1/2U∗)M1/2U = U∗MU, (12.7)

i.e., U is unitary with weight matrix M .

12.3. Perturbation Theory∗

It is often the case in practice that one can solve the “base” instantiation of a problem but
wishes to know how the solution changes if one perturbs the problem. In our setting we ask how
the eigenvalues change when we change the underlying matrix. More precisely, given Hermitian B
and C and a real ε we attempt to expand the eigenvalues of B + εC in a Taylor series in ε. To
lessen the notation (and with an eye to future applications) we develop the theory for the greatest
eigenvalue

λ1(B + εC) = λ1(B) + εd1 + ε2d2/2 + · · ·
where our calculus suggests that dk should denote the kth derivative of λ1 at B in the direction C.
First some examples. If C = I and Bq1 = λ1q1 then (B + εI)q1 = (λ1 + ε)q1 and so

λ1(B + εI) = λ1(B) + ε

and so clearly d1 = 1 and the rest of dk = 0. Similarly, if C = B then

λ1(B + εB) = (1 + ε)λ1(B) = λ1(B) + ελ1(B)

and so d1 = λ1(B) and again the remaining dk = 0. We could generalize this to those C that are
multiples of I or B, but this still remains too sparse a sampling of the direction space. Our third
example exposes the key obstacle. The eigenvalues of

(
1 0
0 1

)
+ ε

(
1 0
0 −1

)
(12.8)

are 1+ ε and 1− ε which appear as banal as our two previous examples – until we order them. For
if λ1 is the largest and λ2 the smallest we find

λ1(B + εC) = 1 + |ε| and λ2(B + εC) = 1− |ε|. (12.9)
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Hence, a diagonal perturbation of a diagonal matrix can produce eigenvalues that do not vary
smoothly with ε. The culprit here is the multiplicity of λ1(I), for as it is 2 we find that it splits
when I is perturbed. Although there are means to accommodate such splitting we will assume here
that λ1 of the unperturbed matrix is simple.

To resolve the general case we return to our source and develop the resolvent

R(s, ε) = (sI − (B + εC))−1

in a Taylor series in ε. Namely,

R(s, ε) = ((sI −B)− εC(sI −B)−1(sI −B))−1

= (sI −B)−1(I − εC(sI − B)−1)−1

= R(s, 0)(I − εCR(s, 0))−1

= R(s, 0)
∞∑

j=0

εj(CR(s, 0))j

= R(s, 0) + εR(s, 0)CR(s, 0) +O(ε2).

Regarding the associated eigenprojection we note that λ1(B + εC) is a pole of s 7→ R(s, ε). and a
zero of the characteristic polynomial, s 7→ χB(s, ε) = det(sI − (B + εC)). This is a polynomial in
s with coefficients that are polynomials in ε. It follows from Prop. 10.9 that there exists a small
circle, C1, about λ1(B) that both includes λ1(B + εC) and excludes λj(B + εC) for j > 1 and all ε
in some interval about 0. As a result, the perturbed eigenprojection is

P1(B + εC) =
1

2πi

∫

C1

R(s, ε) ds

=
1

2πi

∫

C1

(R(s, 0) + εR(s, 0)CR(s, 0) +O(ε2)) ds

= P1(B) + ε
1

2πi

∫

C1

R(s, 0)CR(s, 0) ds+O(ε2).

We now turn to the partial fraction expansion of R(s, 0) to achieve

1

2πi

∫

C1

R(s, 0)CR(s, 0) ds =
1

2πi

∫

C1

h∑

j=1

Pj(B)

s− λj(B)
C

h∑

k=1

Pk(B)

s− λk(B)
ds

=
1

2πi

∫

C1

P1(B)

s− λ1(B)
C

h∑

k=2

Pk(B)

s− λk(B)
+

h∑

j=2

Pj(B)

s− λj(B)
C

P1(B)

s− λ1(B)
ds

= P1(B)C
h∑

k=2

Pk(B)

λ1(B)− λk(B)
+

h∑

k=2

Pk(B)

λ1(B)− λk(B)
CP1(B).

It follows that
P1(B + εC) = P1(B) + ε(P1(B)CS1 + S1CP1(B)) +O(ε2) (12.10)

where

S1 ≡
h∑

k=2

Pk(B)

λ1(B)− λk(B)
,
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is the so–called reduced resolvent. In order to derive the perturbation series for λ1(B+ εC) we take
the trace of each side of

(B + εC)P1(B + εC) = λ1(B + εC)P1(B + εC).

Namely
tr((B + εC)P1(B + εC)) = λ1(B + εC)tr(P1(B + εC)) = λ1(B + εC). (12.11)

where we have used the fact that λ1(B+ εC) is simple and that the trace of a projection is its rank.
We now develop the left side of (12.11).

(B + εC)P1(B + εC) = (B + εC)(P1(B) + ε(P1(B)CS1 + S1CP1(B)) +O(ε2))

= λ1(B)P1(B) + ε(CP1(B) +B(P1(B)CS1 + S1CP1(B))) +O(ε2)
(12.12)

We note that P1(B)S1 = S1P1(B) = 0 will cause the S1 terms in (12.12) to vanish upon taking the
trace. In particular

tr(BP1(B)CS1) = tr(BP1(B)S1C) = 0 and tr(BS1CP1(B)) = tr(BS1P1(B)C) = 0.

Hence, the trace of (12.12) reveals

λ1(B + εC) = tr((B + εC)P1(B + εC)) = λ1(B) + εtr(CP1(B)) +O(ε2). (12.13)

or, on recalling that P1(B) = q1q
∗
1 is just projection onto the first eigenvector, that

Proposition 12.6. If B and C are Hermitian and λ1(B), the greatest eigenvalue of B, is simple
then

λ1(B + εC) = λ1(B) + q∗1Cq1ε+O(ε2). (12.14)

where q1 = q1(B) is the associated eigenvector of B.

As a very simple example, you might wish to confirm that the largest eigenvalue of
(

2 −1
−1 2

)
+ ε

(
2 0
0 0

)

behaves like 3+ ε+O(ε2). We will develop much richer examples in sections and exercises to come.
One such example will require an understanding the generalized perturbation problem

(S + εX)u = λMu

where M is Hermitian and positive definite. As with (12.3) we may return this to the standard
perturbation problem

(B + εC)q = λq

via q = M1/2u, B = M−1/2SM−1/2 and C = M−1/2XM−1/2. In this case the key term in the
perturbation expansion is

q∗1Cq1 = (M1/2u1)
∗M−1/2XM−1/2M1/2u1 = u∗1Xu1.

As a result,
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Proposition 12.7. If S, M and X are Hermitian and M is positive definite and λ1(S,M), the
greatest eigenvalue of (S,M), is simple then

λ1(S + εX,M) = λ1(S,M) + u∗1Xu1ε+O(ε2). (12.15)

where u1 = u1(S,M) is the associated eigenvector of (S,M).

12.4. Rayleigh’s Principle and the Power Method∗

As the eigenvalues of a Hermitian matrix, B ∈ Rn×n, are real we may order them from high to
low,

λ1 ≥ λ2 ≥ · · · ≥ λn. (12.16)

In this section we will derive two extremely useful characterizations of the largest eigenvalue. The
first was discovered by Lord Rayleigh in his research on sound and vibration. To begin, we denote
the associated orthonormal eigenvectors of B by

q1, q2, . . . , qn (12.17)

and note that each x ∈ Rn enjoys the expansion

x = (x∗q1)q1 + (x∗q2)q2 + · · ·+ (x∗qn)qn. (12.18)

Applying B to each side we find

Bx = (x∗q1)λ1q1 + (x∗q2)λ2q2 + · · ·+ (x∗qn)λnqn. (12.19)

Now taking the inner product of (12.18) and (12.19) we find

x∗Bx = (x∗q1)
2λ1 + (x∗q2)

2λ2 + · · ·+ (x∗qn)
2λn

≤ λ1{(x∗q1)2 + (x∗q2)
2 + · · ·+ (x∗qn)

2}
= λ1x

∗x.

That is, x∗Bx ≤ λ1x
∗x for every x ∈ Rn. This, together with the fact that q∗1Bq1 = λ1q

∗
1q1

establishes

Proposition 12.8. Rayleigh’s Principle. If B is Hermitian then its largest eigenvalue is

λ1 = max
x 6=0

x∗Bx

x∗x

and the maximum is attained on the line through the associated eigenvector, q1.

As Rayleigh’s Principle identifies only the principle “direction” it is often presumed that the
maximum is taken over unit vectors, i.e., Rayleigh’s Principle is written

λ1 = max
x∗x=1

x∗Bx. (12.20)

As unit vectors in the real plane are specially easy to write, namely x = x(θ) = (cos(θ), sin(θ))T ,
we may visualize the Rayleigh quotient for real 2–by–2 matrices. For example, if

B =

(
2 −1
−1 2

)
(12.21)
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then x(θ)TBx(θ) = 2 − sin(2θ) clearly assumes its maximum of 3 at θ = π/4 and its minimum
of 1 when θ = 3π/4. Confirm that 3 and 1 are the eigenvalues of B and that their associated
eigendirections are π/4 and 3π/4. With little extra work we can prove

Proposition 12.9. Minimax Principle. If B is Hermitian with eigenvalues and eigenvectors
in (12.16) and (12.17) then

λk = max
dim(W )=k

min
06=x∈W

x∗Bx

x∗x
, (12.22)

where the W that appear in the maximum are subspaces of Cn.

Proof: Given a subspace W ⊂ Cn we define

λ(W ) ≡ min
06=x∈W

x∗Bx

x∗x
,

and proceed to show that λk ≥ λ(W ) when dim(W ) = k and that there exists a subspace, Wk, of
dimension k for which λk ≤ λ(Wk). Now, as dim(W ) = k and dim(sp{qk, qk+1, . . . , qn}) = n−k+1 it
follows that their intersection has dimension at least 1. If x is a nonzero vector in their intersection
then

x =
n∑

j=k

(x∗qj)qj and x∗Bx =
n∑

j=k

x∗(x∗qj)Bqj =
n∑

j=k

(x∗qj)
2λj ≤ λk

n∑

j=k

(x∗qj)
2 = λkx

∗x

and so

λ(W ) ≤ x∗Bx

x∗x
= λk.

Conversely, for every x ∈ Wk = sp{q1, q2, . . . , qk} we find

x∗Bx =

k∑

j=1

x∗(x∗qj)Bqj =

k∑

j=1

(x∗qj)
2λj ≥ λk

k∑

j=1

(x∗qj)
2 = λkx

∗x

and so λ(Wk) ≥ λk. End of Proof.

For our next characterization we return to (12.19) and record higher powers of B onto x

Bkx = (x∗q1)λ
k
1q1 + (x∗q2)λ

k
2q2 + · · ·+ (x∗qn)λ

k
nqn

= (x∗q1)λ
k
1

(
q1 +

x∗q2
x∗q1

λk2
λk1
q2 + · · ·+ x∗qn

x∗q1

λkn
λk1
qn

)
.

(12.23)

And so, using sign(t) ≡ t/|t|,

Bkx

‖Bkx‖ = sign(λk1x
∗q1)q1 +O((λ2/λ1)

k)

and note that the latter term goes to zero with increasing k so long as λ1 is strictly greater than
λ2. If, in addition, we assume that λ1 > 0, then the first term does not depend on k and we arrive
at
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Proposition 12.10. The Power Method. If B is Hermitian and its greatest eigenvalue is
simple and positive and the initial guess, x, is not orthogonal to q1 then

lim
k→∞

Bkx

‖Bkx‖ = sign(x∗q1)q1

By way of illustration, we record Bkx/‖Bkx‖ for the B of (12.21), a random x, and k = 1
through 7,
(
0.97404
0.22635

)
,

(
0.95709
−0.28980

)
,

(
0.82030
−0.57194

)
,

(
0.74783
−0.66389

)
,

(
0.72098
−0.69296

)
,

(
0.71176
−0.70242

)
,

(
0.70866
−0.70555

)
.

This is indeed approaching q1 = [1,−1]/
√
2. As with the Rayleigh quotient it is a simple matter

to arrange things as to converge on the eigenvector associated with the smallest eigenvalue. To see
this we recall that 1/λn is the largest eigenvalue of B−1 and hence B−kx/‖B−kx‖ ought to converge
to qn. The associated method is called Inverse Iteration.

12.5. Hückel’s Molecular Orbital Theory∗

Perhaps the most systematic application of the Minimax Principle has been to the determination
of electronic structure of atoms and molecules. We will develop the necessary tools in the context of
benzene, C6H6. It is a planar molecule, Figure 12.1, comprised of 6 carbon atoms and 6 hydrogen
happens, coupled by 12 bonds. The single electron of each hydrogen atom lies in its 1s orbital. Each
carbon has 2 electrons in its 1s orbital, 2 electrons in its 2s orbital and 2 electrons in its 2p orbital.
Of these 4 outer carbon electrons it is believed that three are devoted to planar bounds with its
three neighbors. This leaves one free electron per carbon to occupy the associated 2p out-of-plane
orbital, Figure 12.1(B), and to supposedly interact with neighboring molecules.

C H

C

H

C

H

CH

C

H

C

H

(A) (B)

Figure 12.1 The structure of benzene. (A) The planar disposition of its six carbons and six
hydrogens. (B) The π-orbitals if its six π-electrons.

The theory of Hückel provides a means to predict the ground state of these, so-called, π-orbitals.
This ground state is derived from the Schrödinger equation (recall Eq. (9.73))

− h2

8π2m
∆Ψ(x, y, z, t) + V (x, y, z)Ψ(x, y, z, t) =

ih

2π

∂Ψ(x, y, z, t)

∂t

where ∆Ψ ≡ ∂2Ψ(x, y, z, t)

∂x2
+
∂2Ψ(x, y, z, t)

∂y2
+
∂2Ψ(x, y, z, t)

∂z2
,

(12.24)
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and V is the potential associated with the six π-electrons of benzene. We begin our reduction of
(12.24) by supposing the wave function, Ψ, to have the wave-like time dependence

Ψ(x, y, z, t) = exp(−2πiEt/h)ψ(x, y, z). (12.25)

On substituting this assumption into (12.24) we find that ψ must obey the eigenvalue problem

Hψ = Eψ where H =
−h2
8π2m

∆+ V. (12.26)

Here E denotes energy and we define the ground state to be the ψ function associated with
the least eigenvalue of (12.26). As H is indeed a real symmetric linear transformation this least
eigenvalue may be characterized by the Rayleigh Principle

E1 = min
ψ

〈Hψ, ψ〉
〈ψ, ψ〉 (12.27)

where the inner product is the full space integral

〈ψ, φ〉 ≡
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ(x, y, z)φ(x, y, z) dxdydz.

The beauty of the Hückel method is that it reduces the formidable, infinite dimensional, eigenprob-
lem (12.27) to an eigenvalue problem for the 6-by-6 adjacency matrix associated with benzene’s 6
carbons.

To see this we presume that each candidate molecular orbital, ψ̃, is a linear combination of
atomic orbitals, φi. In particular, we assume that

ψ̃ =

6∑

i=1

ciφi (12.28)

where each ci ∈ R. Furthermore, if the atomic orbitals are assumed orthonormal then the denomi-
nator in Eq. (12.27) takes the familiar form

〈ψ̃, ψ̃〉 =
6∑

i=1

c2i = cT c.

Regarding the numerator of Eq. (12.27) it remains to specify 〈Hφi, φj〉. First off, 〈Hφi, φi〉 denotes
the average energy of the π–orbital at the ith carbon. As all carbons are identical we can expect

〈Hφi, φi〉 = α

for each i. (A typical value is α = −11.2 eV.) Next, if atoms i and j are not adjacent then we may
reasonably expect that their atomic orbitals do not interact and so

〈Hφi, φj〉 = 0 if atoms i and j are not adjacent.

Finally, the interaction energy between adjacent orbitals, will be denoted β. (A typical value for β
is −0.7 eV.) With these approximations, the difficult numerator takes the form

〈Hψ̃, ψ̃〉 = cT (αI + βA)c
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where

A =




0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0


 (12.29)

is the adjacency matrix of the hexagon of carbons. The first row says, e.g., that the first carbon is
adjacent to the second and the sixth. Hence, invoking Rayleigh’s Principle,

E1 ≤
〈Hψ̃, ψ̃〉
〈ψ̃, ψ̃〉

=
cT (αI + βA)c

cT c
, ∀c ∈ R6.

Hence minimizing over c brings

E1 ≤ Ẽ1 = min
c∈R6

cT (αI + βA)c

cT c
. (12.30)

It follows that Ẽ1 = α + βλ1 where λ1 is the greatest (recall that β < 0) eigenvalue of A.
It remains only to work out the eigenvalues and vectors of A. From its resolvent

(sI −A)−1 =
1

s4 − 5s2 + 4

















s3 − 3s s2 − 2 s 2 s s2 − 2
s2 − 2 s3 − 3s s2 − 2 s 2 s

s s2 − 2 s3 − 3s s2 − 2 s 2
2 s s2 − 2 s3 − 3s s2 − 2 s
s 2 s s2 − 2 s3 − 3s s2 − 2

s2 − 2 s 2 s s2 − 2 s3 − 3s

















we recognize that s4 − 5s2 + 4 = (s2 − 4)(s2 − 1) and so the eigenvalues of A are

λ1 = 2, λ2 = 1, λ3 = −1 and λ4 = −2. (12.31)

The resulting partial fraction expansion

(sI − A)−1 =
1

s + 2
P4 +

1

s+ 1
P3 +

1

s− 1
P2 +

1

s− 2
P1

where

P4 =
1

6

















1 −1 1 −1 1 −1
−1 1 −1 1 −1 1
1 −1 1 −1 1 −1
−1 1 −1 1 −1 1
1 −1 1 −1 1 −1
−1 1 −1 1 −1 1

















P3 =
1

6

















2 −1 −1 2 −1 −1
−1 2 −1 −1 2 −1
−1 −1 2 −1 −1 2
2 −1 −1 2 −1 −1
−1 2 −1 −1 2 −1
−1 −1 2 −1 −1 2

















P2 =
1

6

















2 1 −1 −2 −1 1
1 2 1 −1 −2 −1
−1 1 2 1 −1 −2
−2 −1 1 2 1 −1
−1 −2 −1 1 2 1
1 −1 −2 −1 1 2

















P1 =
1

6

















1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

















reveals the associated eigenprojections. Their traces expose the associated geometric multiplicities,
(1,2,2,1), and permit us to pluck the associated eigenvectors from the first one or two columns of
each projection. In particular,

E4 =

















1
−1
1
−1
1
−1

















E3 =

















2 −1
−1 2
−1 −1
2 −1
−1 2
−1 −1

















E2 =

















2 1
1 2
−1 1
−2 −1
−1 −2
1 −1

















E1 =

















1
1
1
1
1
1

















.

225



We orthonormalize these to

Q4 =
1√
6




1
−1
1
−1
1
−1


 Q3 =

1√
3




1
−1/2
−1/2
1

−1/2
−1/2


 ,




0
1/2
−1/2
0

1/2
−1/2


 Q2 =

1√
3




1
1/2
−1/2
−1

−1/2
1/2


 ,




0
1/2
1/2
0

−1/2
−1/2


 Q1 =

1√
6




1
1
1
1
1
1




(12.32)
and illustrate the energy levels and eigenmodes in Figure 12.2. Recall that the true energy levels
are Ẽj = α+βλj. In order to achieve the least total energy, we place π-electrons, of alternate spins,

at the lowest Ẽj (including multiplicity). In our case these leads to 2 electrons at λ1 and 4 electrons
at λ2 for a total energy of 6α + 8β.

−2

−1.5

−1

−0.5

0

0.5

1
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2

E
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y

(A)

−2−2−2−2−2−2 −1−1−1−1−1−1 −1−1−1−1−1−1

111111 111111 222222

(B)

Figure 12.2 The π energies and orbitals of benzene. (A) We place a pair of electrons at each
energy level, starting with the greatest, until there are no electrons remaining. (B) The eigenvectors,
(12.32), dictate the relative contribution of the atomic orbital (the ci coefficients in (12.28)) to the
associated molecular orbital. Positive coefficients are black on top. The number at the center of
each molecule is the associated eigenvalue of A.

The upshot is that the molecular orbitals of π-electrons of hydrocarbons are completely deter-
mined by the eigenvalues and vectors of the molecule’s carbon adjacency matrix. As such, quantum
chemists have devoted considerable energy to understanding the eigenstructure of adjacency matri-
ces, particularly in molecules with symmetry. We will pursue this briefly in the exercises and then
much more fully in Chapter 15 where we use group representation theory to find, by hand, all 60
eigenvalues of the “Buckyball.”

12.6. Optimal Damping of Mechanical Networks∗

We revisit our work, from §8.4, on dynamics of mechanical networks. We close up loose ends, but
this is not mere reconciliation, we go considerably beyond. We consider the initial value problem
for u(t) ∈ Rn

Mu′′(t) +Du′(t) + Su(t) = 0, t > 0,

u(0) =f, u′(0) = g,
(12.33)

where ′ ≡ d/dt and M, D, and S are each symmetric and positive definite. It will be convenient to
consider an equivalent first order system. In particular, with V (t) denoting the 2n− by − 1 vector
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[u(t), u′(t)] we find that (12.33) becomes

V ′(t) = A(D)V (t), V (0) =

(
f
g

)
, A(D) =

(
0 I

−M−1S −M−1D

)
(12.34)

We suppose the mass, M , and stiffness, S, to be prescribed and we venture to produce a damping
D for which the energy induced by the initial displacement, f , and velocity, g, is dissipated as
efficiently as possible. The energy we have in mind is simply the sum of the kinetic and potential
instantaneous energies, namely

E(t) ≡ u′(t)TMu′(t) + u(t)TSu(t). (12.35)

A more natural measure of damping efficiency is the total energy
∫ ∞

0

E(t) dt.

Let us try to make their dependence on D more explicit. As V (t) = exp(A(D)t)V (0) it follows that

E(t) = V (0)T exp(A(D)T t)F exp(A(D)t)V (0) where F =

(
S 0
0 M

)
.

As a result, the total energy is
∫ ∞

0

E(t) dt = V (0)TE(D)V (0), where E(D) =

∫ ∞

0

exp(A(D)T t)F exp(A(D)t) dt. (12.36)

One obvious defect with this measure of damping efficiency is its dependence on the initial state,
V (0) = [f, g]. We remedy this by maximizing the above over all initial states of unit energy. That
is, we consider the greatest total energy

τ1(D) ≡ max
V (0)T FV (0)=1

V (0)TE(D)V (0). (12.37)

One recognizes in (12.37) Rayleigh’s Generalized Principle (Exer. 12.9) for the greatest eigenvalue
of the pair (E(D), F ). That is, τ1(D) is the greatest eigenvalue of the generalized problem

E(D)V = τFV. (12.38)

With E(D) as derived in (12.36) this remains a formidable eigenproblem. Over the next few pages we
will restrict the damping matrix to natural subspaces in which E(D) may be expressed as products
of the system matrices, M,K,D, and their inverses.

The most restricted class is that of so-called friction damping where we suppose the damping
to be proportional to the mass. The key to this entire section is the following energy equation.

Proposition 12.11. If D = 2aM then

E(t) = − d

dt

{
u(t)TMu′(t) + au(t)TMu(t) +

1

2a
E(t)

}
. (12.39)

Proof: As u satisfies (12.33) we find

E ′(t) = 2(Mu′′(t) + Su(t))Tu′ = −4au′(t)TMu′(t). (12.40)
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Continuing to use (12.33),

E(t) = u′(t)TMu′(t) + u(t)TSu(t)

= u′(t)TMu′(t)− u(t)TMu′′(t)− 2au(t)TMu′(t)

= u′(t)TMu′(t)− {(u(t)TMu′(t))′ − u′(t)TMu′(t)} − a(u(t)TMu(t))′

= −(u(t)TMu′(t))′ − a(u(t)TMu(t))′ − 1

2a
E ′(t),

where in the final line we have used (12.40). End of Proof.

Integrating E, this proposition yields

∫ t

0

E(s) ds = −
{
u(s)TMu′(s) + au(s)TMu(s) +

1

2a
E(s)

}s=t

s=0

= fTMg + afTMf +
1

2a
E(0)− u(t)TMu′(t)− au(t)TMu(t)− 1

2a
E(t).

Now if a > 0 then u(t), u′(t), and E(t) tend to zero as t→ ∞. As a result,

Corollary 12.12. If D = 2aM then the total energy is
∫ ∞

0

E(t) dt =
E(0)

2a
+ fTM(af + g). (12.41)

If we now reconcile (12.41) with (12.36) we find that

E(2aM) =

(
aM + S/(2a) M/2

M/2 M/(2a)

)
. (12.42)

Hence, if V = [u, v] is an eigenvector of (E(2aM), F ) with eigenvalue τ then

aMu+ Su/(2a) +Mv/2 = τSu and Mu/2 +Mv/(2a) = τMv.

The latter requires that u = (2τ − 1/a)v and this in turn reduces the former to

(4τ 2 − 4τ/a + 1/a2)Sv = (4aτ − 1)Mv.

This states that v is an eigenvector of (S,M) and

4aτ − 1

4τ 2 − 4τ/a + 1/a2
= λj

where λj is an associated eigenvalue of (S,M). This quadratic in τ has the two roots

1

2a
+
a±

√
a2 + λj

2λj
.

τ1(D), the largest of these roots, is attained at j = n for the least of the eigenvalues of (S,M). On
combining this with the previous corollary we find
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Corollary 12.13. If D = 2aM then the associated greatest total energy is

τ1(2aM) =
1

2a
+
a+

√
a2 + λn
2λn

. (12.43)

We have graphed this function in Figure 12.3 for the simple choice λn = 1. We note that τ1
approaches infinity for both small and large a. For later purposes we record the magnitude, a, for
which the greatest total energy is least,

â =
√
λn

√√
5− 1

2
, (12.44)

as well as the associated leading eigenvector of (E(2âM), F ),

V̂1 = qn(2τ1(2âM)− 1/â, 1) = qn((â+
√
â2 + λn)/λn, 1). (12.45)
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Figure 12.3. The greatest total energy for a system with friction damping D = 2aM .

This graph enjoys the nice property that it always lies below any chord connecting two of
its points. We call functions with such graphs convex. You may recall, see (3.36), that the
compliance of a mechanical network is a convex function of the fiber stiffnesses. We will need a
slight generalization of that result.

Proposition 12.13. If the function v 7→ H(u, v) is convex for each u in some set U and

h(v) ≡ max
u∈U

H(u, v),

then h is convex.

Proof: Given v1 and v2 and t ∈ [0, 1] we note that

H(u, tv1 + (1− t)v2) ≤ tH(u, v1) + (1− t)H(u, v2), ∀u ∈ U .

From the fact that the maximum of a sum is less than the sum of the maximums it follows that

max
u∈U

H(u, tv1 + (1− t)v2) ≤ tmax
u∈U

H(u, v1) + (1− t)max
u∈U

H(u, v2),
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i.e., h(tv1 + (1− t)v2) ≤ th(v1) + (1− t)h(v2). End of Proof.

Our goal in the remainder of the section is to show that τ1 is in fact convex over a larger class of
damping matrices and that (12.44) remains the best damping. We look first for a more convenient
characterization of E(D). Recalling the energy equation, Prop. 12.11, we search for an X for which

E(t) = − d

dt
V (t)TXV (t). (12.46)

Representing E directly in terms of V and computing the derivative on the right side requires of X
that

V (t)TFV (t) = −V ′(t)TXV (t)− V (t)TXV ′(t)

= −V (t)T (XA(D) + AT (D)X)V (t).

Evaluating this expression at t = 0 and using the fact that the initial state, V (0), is perfectly
arbitrary we find that X must satisfy the Liapunov equation

AT (D)X +XA(D) = −F. (12.47)

We will argue in the exercises that this equation possesses a unique symmetric positive definite
solution, that we naturally refer to as E(D). We note however that (12.47) may be solved explicitly
when D is drawn from the Caughy class, C, of symmetric positive definite matrices for which

S−1DM−1 =M−1DS−1. (12.48)

In particular, if D ∈ C then

E(D) =

(
1
2
D + SD−1M 1

2
M

1
2
M MD−1M

)
(12.49)

is the desired solution of (12.47). We note that 2âM ∈ C and now proceed to study the greatest
eigenvalue of generalized perturbation problem (E(2âM + εC), F ) for C ∈ C. From

(2âM + εC)−1 = ((I + εC(2âM)−1)2âM)−1

= (2âM)−1(I + εC(2âM)−1)−1

= (2âM)−1
∞∑

k=0

(−ε)k(C(2âM)−1)k

= (2âM)−1 − (2âM)−1εC(2âM)−1 +O(ε2)

we develop

E(2âM + εC) = E0 + εE1 +O(ε)2

= E(2âM) + ε

(
C/2− SM−1C/(4â2) 0

0 −C/(4â2)

)
+O(ε2).

(12.50)

We now have all the pieces required to establish that 2âM is a critical point of τ1. That is,

Proposition 12.14. If λn, the least eigenvalue of the undamped system, (S,M), is simple then

τ1(2âM + εC) = τ1(2âM) +O(ε2) (12.51)

for each C ∈ C.
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Proof: If λn is a simple eigenvalue of (S,M) then τ1(2âM) is a simple eigenvalue of (E(2âM), F )
and we may deduce from Prop. 12.7 that

τ1(2âM + εC) = τ1(2âM) + εV̂ T
1 E1V̂1 +O(ε2)

where V̂1 was derived in (12.45) and E1 in (12.50). We first compute

E1V̂1 =
(
C/2− SM−1C/(4â2) 0

0 −C/(4â2)

)(
â+

√
â2+λn
λn

qn
qn

)

=

(
â+

√
â2+λn
λn

(
1
2
C − 1

4â2
SM−1C

)
qn

− 1
4â2
Cqn

)
.

and then

V̂ T
1 E1V̂1 =

{(
â+

√
â2 + λn
λn

)2(
1

2
− λn

4â2

)
− 1

4â2

}
qTnCqn = 0,

because the braced term vanishes thanks to (12.44). End of Proof.

The convexity of D 7→ τ1(D) will follow from Prop. 12.13 and our various maximum principles.

Proposition 12.15. The greatest total energy, D 7→ τ1(D), is convex for D ∈ C.

Proof: In light of Prop. 12.13 and the variational characterization, (12.37), of τ1(D), it will suffice
to show that D 7→ V TE(D)V is convex for each V ∈ R2n. We split V into its two n–dimensional
components, V = [f g], and find

V TE(D)V = 1
2
fTDf + fTSD−1Mf + fTMg + gTMD−1Mg. (12.52)

As a finite sum of convex functions is convex it suffices to show that each of the summands in (12.52)
is convex. The first term is linear in D while the third is independent of D and so both are convex
in D. With respect to the second term we may deduce (Exer. 12.13) from D ∈ C that SD−1M is
symmetric and positive definite. As such, it follows from our earlier energy considerations, namely
Prop. 3.4, that

fTSD−1Mf = max
x∈Rn

fTx− xTM−1DS−1x. (12.53)

As 2fTx − xTM−1DS−1x is convex in D, it follows from Prop. 12.13 and (12.53) that so too is
D 7→ fTSD−1Mf . In a similar fashion, from

gTMD−1Mg = max
x∈Rn

2xTMg − xTDx,

one deduces the convexity of D 7→ gTMD−1Mg. End of Proof.

It remains only to confirm that a critical point of a convex function is indeed a global minimizer.

Proposition 12.16. The greatest total energy, D 7→ τ1(D), attains its minimum over C at

D̂ = 2âM .

Proof: If D2 ∈ C and τ1(D2) < τ1(D̂) then, as τ1 is convex,

τ1(D̂ + ε(D2 − D̂)) = τ1(εD2 + (1− ε)D̂) ≤ ετ1(D2) + (1− ε)τ1(D̂)
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for arbitrary ε. Hence, for ε > 0,

τ1(D̂ + ε(D2 − D̂))− τ1(D̂)

ε
≤ τ1(D2)− τ1(D̂).

As ε→ 0 we have argued in (12.51) that the left side goes to zero, in contradiction to τ1(D2) < τ1(D̂).
End of Proof.

Let us apply this finding to the optimal damping of the chain in Figure 3.1. We assume uniform
masses, m, and stiffnesses, k, and seek that damping matrix that produces the least greatest total
energy. The respective mass, damping, and stiffness matrices of the form

M = m



1 0 0
0 1 0
0 0 1


 , D =



d11 d12 d13
d12 d22 d23
d13 d23 d33


 , S = k




2 −1 0
−1 2 −1
0 −1 2


 .

This D has six degrees of freedom and one can associate these with 6 dashpots at and between the 3
masses in Figure 3.1. We first restrict our choices to the Caughy Class by enforcing DS−1 = S−1D.
This restricts us to the three dimensional class of damping matrices of the form

D =




a3 a2 a1 − a3
a2 a1 a2

a1 − a3 a2 a3


 . (12.54)

The eigenvalues of this D are 2a3− a1 and a1± a2
√
2 hence D ∈ C so long as its parameters, a1, a2

and a3 obey
2a3 > a1 >

√
2|a2|.

We note that the least eigenvalue of (S,M) is simple and

λ3 =
k

m
(2−

√
2).

Invoking Prop. 12.16 we find that D 7→ τ1(D) attains its minimum over C at D = 2âM . In terms
of the parametrization (12.54) this requires

a1 = a3 =

√
2km(2−

√
2)(

√
5− 1) and a2 = 0. (12.55)

12.7. Notes and Exercises

We have followed Kato (1980). For more on Molecular Orbital Theory see Streitwieser (1961).

1. The stiffness matrix associated with the unstable frame of Figure 3.3 is

S =




1 0 −1 0
0 1 0 0
−1 0 1 0
0 0 0 1


 .

(i) Find the three distinct eigenvalues, λ1 = 1, λ2 = 2, λ3 = 0, along with their associated
eigenvectors e1,1, e1,2, e2,1, e3,1, and projection matrices, P1, P2, P3. What are the respective
geometric multiplicities?
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(ii) Show that R(P3) = N (S).

(iii) Assemble

S+ =
1

λ1
P1 +

1

λ2
P2

and check your result against pinv(S) in Matlab.

(iv) Use S+ to solve Sx = f where f = [0 1 0 2]T and carefully draw before and after pictures
of the unloaded and loaded swing.

(v) It can be very useful to sketch each of the eigenvectors in this fashion. In fact, a movie
is the way to go. Please run the Matlab truss demo by typing truss and view all 12 of the
movies. Please sketch the 4 eigenvectors of (i) by showing how they deform the swing.

2. Lets consider the vibration of the equilateral triangle. Given the incidence matrix, A, of
Exer. 3.9 assemble

S = ATA =
1

4




5
√
3 −4 0 −1 −

√
3√

3 3 0 0 −
√
3 −3

−4 0 5 −
√
3 −1

√
3

0 0 −
√
3 3

√
3 −3

−1 −
√
3 −1

√
3 2 0

−
√
3 −3

√
3 −3 0 6




and use poly and roots to conclude that its characteristic polynomial is

χS(λ) = λ3(λ− 3)(λ− 3/2)2.

We identified the eigenvectors corresponding to λ = 0 in Exer. 3.9. Compute those corre-
sponding to λ3 = 3 and λ2 = 3/2 and associate them with the figure below. They are v3 =
(
√
3, 1,−

√
3, 1, 0− 2) and v2,1 = (

√
3,−1,−

√
3,−1, 0, 2) and v2,2 = (−

√
3,−1, 0, 2,

√
3,−1).

Figure 12.4 The 3 modes of vibration of the triangle.

3. Show that if W is Hermitian and positive definite then 〈x, y〉W ≡ x∗Wy is an inner product
on Cn. Show that if 〈Ax,Ay〉W = 〈x, y〉W then B ≡W 1/2AW−1/2 is unitary.

4. We can now prove that the density in Eq. (6.53) obeys

∫

x∈Rn

exp(−xTC−1x) dx =
√
(2π)n det(C)
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if C is symmetric and positive definite. Hint: If C = QTΛQ then
∫

x∈Rn

exp(−xTC−1x/2) dx =

∫

x∈Rn

exp(−(Qx)TΛ−1Qx/2) dx

Now introduce the change of variables y = Qx and the n-dimensional analog of the volume
distortion equation, (3.33), to argue that dy = | det(Q)|dx = dx and hence

∫

x∈Rn

exp(−xTC−1x/2) dx =

∫

y∈Rn

exp(−y21/(2λ1)− · · · − y2n/(2λn)) dy

=

n∏

j=1

∫ ∞

−∞
exp(−y2j/(2λj)) dyj

=
n∏

j=1

√
2λj

∫ ∞

−∞
exp(−s2) ds

now use Eq. (6.52).

5. By similar reasoning

−
∫

Rn

g0,C(x) log g0,C(x) dx =

∫

x∈Rn

exp(−xTC−1x/2)

2
√
(2π)n det(C)

(xTC−1x+ n log(2π) + log(det(C)) dx

=
n log(2π) + log(det(C))

2
+

∫

y∈Rn

(y21/(2λ1) + · · ·+ y2n/(2λn)) exp(−y21/(2λ1)− · · · − y2n/(2λn))√
(2π)n det(C)

dy

=
n log(2π) + log(det(C))

2
+

n

πn/2

∫ ∞

−∞
s2 exp(−s2) ds

(∫ ∞

−∞
exp(−s2) ds

)n−1

6. Show that if A is Hermitian and x∗Ax = 0 for all x then A = 0.

7. Develop perturbation theory for multiple eigenvalues.

8. Use Prop. 12.9 to prove that if B = BT ∈ Rn×n and Q ∈ Rn×n−1 and QTQ = I and A = QTBQ
then the eigenvalues of A interlace those of B. That is,

λ1(B) ≥ λ1(A) ≥ λ2(B) ≥ λ2(A) ≥ · · · ≥ λn−1(A) ≥ λn(B). (12.56)

9. Generalize Prop. 12.9 to the case that S and M are symmetric and positive definite:

λk = max
dim(W )=k

min
06=x∈W

xTSx

xTMx
, (12.57)

10. The Power Method. Submit a Matlab diary of your application of the Power Method to the
S matrix in Exercise 1.

11. We claimed in §12.5 that the Schrödinger operator is symmetric. By that we mean that

〈Hψ, φ〉 = 〈ψ,Hφ〉 (12.58)

for all ψ and φ for which 〈ψ, ψ〉 and 〈φ, φ〉 are finite. In order to demonstrate (12.58) please
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(a) Show that ∆ψ = ∇ · ∇ψ where ∇ is the gradient, ∇ψ = (∂ψ/∂x, ∂ψ/∂y, ∂ψ/∂z) and ∇·
is the divergence, ∇ · (f1, f2, f3) = ∂f1/∂x+ ∂f2/∂y + ∂f3/∂z.

(b) Confirm the product rule

∇ · (φ∇ψ) = ∇φ · ∇ψ + φ∆ψ. (12.59)

(c) Use (b) to show that

〈Hψ, φ〉 =
∫

R3

(∇ψ · ∇φ+ V ψφ−∇ · (φ∇ψ)) dxdydz (12.60)

(d) The first two terms on the right in (12.60) are indeed symmetric in ψ and φ. Use the
Divergence Theorem ∫

Ω

∇ · f dxdydz =
∫

∂Ω

f · n ds (12.61)

where Ω is a subset of R3 with boundary ∂Ω and outer unit normal n parametrized by arclength,
s, to show that ∫

R3

∇ · (φ∇ψ) dxdydz = 0.

Hint: Argue that since 〈φ, φ〉 <∞ then φ must essentially vanish outside some big set Ω.

(e) Conclude from (c) and (d) that H is indeed symmetric.

12. With regard to the hexagonal arrangement of carbons in the benzene molecule of §12.5 note
that

P =

















0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

















simply permutes, or shifts, or rotates each carbon into its neighbor.

(a) Show that AP = PA for the A in (12.29).

(b) Deduce from (a) that every eigenspace of A must be invariant under P . That is, show that
if Ax = λx then A(Px) = λ(Px) as well.

13. Use (12.48) to show that (12.49) is symmetric and positive definite and a solution to (12.47).

14. Prove that the Caughy class, C, is convex.
15. One general approach to the Lyapunov Equation,

AX∗ +XA∗ = −S (12.62),

is to begin with the Schur decomposition, A = U∗TU . For then U∗T ∗UX +XU∗TU = −S is
simplified via left multiplication by U and right multiplication by U∗, to

T ∗B +BT = −C, where B = UXU∗ and C = USU∗. (12.63)

This triangular system can be solved by forward substitution. To wit, examine the (1,1)
element and find

t1,1b1,1 + b1,1t1,1 = −c1,1
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and next the (1,2) element and find

t1,1b1,2 + b1,1t1,2 + b1,2t2,2 = −c1,2.

Generalize and deduce that so long as no two eigenvalues of A are the negative conjugates of
one another then (12.62) possesses a unique, Hermitian, positive definite solution, X .
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13. The Singular Value Decomposition

The singular value decomposition is, in a sense, the spectral representation of a rectangular
matrix. Of course if A is m-by-n and m 6= n then it does not make sense to speak of the eigenvalues
of A. We may, however, rely on the previous chapter to give us relevant spectral representations of
the two symmetric matrices

ATA and AAT .

That these two matrices together indeed tell us ‘everything’ about A can be gleaned from

N (ATA) = N (A), N (AAT ) = N (AT ),

R(ATA) = R(AT ), and R(AAT ) = R(A).
(13.1)

You have proven the first of these in Exer. 4.10. The proof of the second is identical. The row
and column space results follow from the first two via orthogonality. In light of (13.1) we will see
that the singular value decomposition of A delivers orthonormal bases for the four fundamental
subspaces of A.

Beyond the satisfaction of reinforcing the Fundamental Theorem of Linear Algebra the singular
value decomposition will also shed new light on both least squares and the pseudoinverse. These
results together indicate that the SVD may be a useful means for constructing accurate low rank
approximations of large matrices. Our experimental investigation of this hunch in §13.2 will be
followed by theoretical confirmation in §13.3. In addition, it is a fundamental tool in information
and data sciences.

13.1. The Decomposition

On the spectral side, we shall now see that the eigenvalues of AAT and ATA are nonnegative
and that their nonzero eigenvalues coincide. Let us first confirm this on the A matrix associated
with the unstable swing (see Figure 3.3)

A =




0 1 0 0
−1 0 1 0
0 0 0 1


 . (13.2)

The respective products are

AAT =



1 0 0
0 2 0
0 0 1


 and ATA =




1 0 −1 0
0 1 0 0
−1 0 1 0
0 0 0 1


 .

Analysis of the first is particularly simple. Its null space is clearly just the zero vector while λ1 = 2
and λ2 = 1 are its eigenvalues. Their geometric multiplicities are n1 = 1 and n2 = 2. In ATA we
recognize the S matrix from exercise 12.1 and recall that its eigenvalues are λ1 = 2, λ2 = 1, and
λ3 = 0 with multiplicities n1 = 1, n2 = 2, and n3 = 1. Hence, at least for this A, the eigenvalues of
AAT and ATA are nonnegative and their nonzero eigenvalues coincide. In addition, the geometric
multiplicities of the nonzero eigenvalues sum to 3, the rank of A.

Proposition 13.1. The eigenvalues of AAT and ATA are nonnegative. Their nonzero eigen-
values, including geometric multiplicities, coincide. The geometric multiplicities of the nonzero
eigenvalues sum to the rank of A.
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Proof: If ATAx = λx then xTATAx = λxTx, i.e., ‖Ax‖2 = λ‖x‖2 and so λ ≥ 0. A similar argument
works for AAT .

Now suppose that λj > 0 and that {xj,k}nj

k=1 constitutes an orthogonal basis for the eigenspace
R(Pj). Starting from

ATAxj,k = λjxj,k (13.3)

we find, on multiplying through (from the left) by A that

AATAxj,k = λjAxj,k,

i.e., λj is an eigenvalue of AAT with eigenvector Axj,k, so long as Axj,k 6= 0. It follows from the

first paragraph of this proof that ‖Axj,k‖ =
√
λj, which, by hypothesis, is nonzero. Hence,

yj,k ≡
Axj,k√
λj
, 1 ≤ k ≤ nj (13.4)

is a collection of unit eigenvectors of AAT associated with λj. Let us now show that these vectors
are orthonormal for fixed j.

yTj,iyj,k =
1

λj
xTj,iA

TAxj,k = xTj,ixj,k = 0.

We have now demonstrated that if λj > 0 is an eigenvalue of ATA of geometric multiplicity nj
then it is an eigenvalue of AAT of geometric multiplicity at least nj . Reversing the argument, i.e.,
generating eigenvectors of ATA from those of AAT we find that the geometric multiplicities must
indeed coincide.

Regarding the rank statement, we discern from (13.3) that if λj > 0 then xj,k ∈ R(ATA). The
union of these vectors indeed constitutes a basis for R(ATA), for anything orthogonal to each of
these xj,k necessarily lies in the eigenspace corresponding to a zero eigenvalue, i.e., in N (ATA). As
R(ATA) = R(AT ) it follows that dimR(ATA) = r and hence the nj , for λj > 0, sum to r. End of

Proof.

Let us now gather together some of the separate pieces of the proof. For starters, we order the
eigenvalues of ATA from high to low,

λ1 > λ2 > · · · > λh

and write
ATA = XΛnX

T (13.5)

where
X = [X1 · · ·Xh], where Xj = [xj,1 · · ·xj,nj

]

and Λn is the n-by-n diagonal matrix with λ1 in the first n1 slots, λ2 in the next n2 slots, etc.
Similarly

AAT = Y ΛmY
T (13.6)

where
Y = [Y1 · · ·Yh], where Yj = [yj,1 · · · yj,nj

].

and Λm is the m-by-m diagonal matrix with λ1 in the first n1 slots, λ2 in the next n2 slots, etc. The
yj,k were defined in (13.4) under the assumption that λj > 0. If λj = 0 let Yj denote an orthonormal
basis for N (AAT ). Finally, call

σj =
√
λj
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and let Σ denote the m-by-n matrix diagonal matrix with σ1 in the first n1 slots and σ2 in the next
n2 slots, etc. Notice that

ΣTΣ = Λn and ΣΣT = Λm. (13.7)

Now recognize that (13.4) may be written

Axj,k = σjyj,k

and that this is simply the column by column rendition of

AX = Y Σ.

As XXT = I we may multiply through (from the right) by XT and arrive at the singular value
decomposition of A,

A = Y ΣXT . (13.8)

Let us confirm this on the A matrix in (13.2). We have

Λ4 =




2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 and X =

1√
2




−1 0 0 1

0
√
2 0 0

1 0 0 1

0 0
√
2 0




and

Λ3 =



2 0 0
0 1 0
0 0 1


 and Y =



0 1 0
1 0 0
0 0 1


 .

Hence,

Σ =



√
2 0 0 0
0 1 0 0
0 0 1 0


 (13.9)

and so A = Y ΣXT says that A should coincide with



0 1 0
1 0 0
0 0 1





√
2 0 0 0
0 1 0 0
0 0 1 0







−1/
√
2 0 1/

√
2 0

0 1 0 0
0 0 0 1

1/
√
2 0 1/

√
2 0


 .

This indeed agrees with A. It also agrees (up to sign changes in the columns of X) with what one
receives upon typing [Y,SIG,X]=svd(A) in Matlab.

You now ask what we get for our troubles. I express the first dividend as a proposition that
looks to me like a quantitative version of the fundamental theorem of linear algebra.

Proposition 13.2. If Y ΣXT is the singular value decomposition of A then
(i) The rank of A, call it r, is the number of nonzero elements in Σ.
(ii) The first r columns of X constitute an orthonormal basis for R(AT ). The n− r last columns
of X constitute an orthonormal basis for N (A).
(iii) The first r columns of Y constitute an orthonormal basis for R(A). The m− r last columns
of Y constitute an orthonormal basis for N (AT ).
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Let us now ‘solve’ Ax = b with the help of the pseudo–inverse of A. You know the ‘right’ thing
to do, namely reciprocate all of the nonzero singular values. Because m is not necessarily n we must
also be careful with dimensions. To be precise, let Σ+ denote the n-by-m matrix whose first n1

diagonal elements are 1/σ1, whose next n2 diagonal elements are 1/σ2 and so on. In the case that
σh = 0, set the final nh diagonal elements of Σ+ to zero. Now, one defines the pseudo-inverse of
A to be

A+ ≡ XΣ+Y T .

Taking the A of (13.2) we find

Σ+ =




1/
√
2 0 0

0 1 0
0 0 1
0 0 0




and so

A+ =




−1/
√
2 0 0 1/

√
2

0 1 0 0

1/
√
2 0 0 1/

√
2

0 0 1 0







1/
√
2 0 0

0 1 0
0 0 1
0 0 0






0 1 0
1 0 0
0 0 1


 =




0 −1/2 0
1 0 0
0 1/2 0
0 0 1


 ,

in agreement with what appears from pinv(A). Let us now investigate the sense in which A+ is the
inverse of A. Suppose that b ∈ Rm and that we wish to solve Ax = b. We suspect that A+b should
be a good candidate. Observe now that

(ATA)A+b = XΛnX
TXΣ+Y T b by (13.5)

= XΛnΣ
+Y T b because XTX = I

= XΣTΣΣ+Y T b by (13.7)

= XΣTY T b because ΣTΣΣ+ = ΣT

= AT b by (13.8),

that is, A+b satisfies the least-squares problem ATAx = AT b.

13.2. The SVD in Image Compression

Most applications of the SVD are manifestations of the folk theorem, The singular vectors asso-

ciated with the largest singular values capture the essence of the matrix. This is most easily seen
when applied to gray scale images. For example, the jpeg associated with the image in the top left
of Figure 13.2 is a 262-by-165 matrix. Such a matrix-image is read, displayed and ‘decomposed’ by

M = imread(’JohnBrown.jpg’); imagesc(M); colormap(gray);

[Y,S,X] = svd(double(M));

The singular values lie on the diagonal of S and are arranged in decreasing order. We see their
rapid decline in Figure 13.1.
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Figure 13.1. The singular values of John Brown.

We now experiment with quantitative versions of the folk theorem. In particular, we examine the
result of keeping but the first k singular vectors and values. That is we construct

Ak = Y(:,1:k)*S(1:k,1:k)*X(:,1:k)’;

for decreasing values of k.

Figure 13.2. The results of imagesc(Ak) for, starting at the top left, k=165, 64, 32 and moving
right, and then starting at the bottom left and moving right, k=24,20,16.
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13.3. Low Rank Approximation∗

In this section we establish a precise version of last section’s folk theorem. To prepare the way we
note that if B = BT ∈ Rm×m and we list its eigenvalues, including multiplicities, {λ1, λ2, . . . , λm}
then, from Cor. 11.8 it follows that

tr(B) =

m∑

i=1

λj(B). (13.10)

This together with our trace formulation of the Frobenius norm of A ∈ Rm×n, recall (1.18), yields

‖A‖2F = tr(AAT ) =
m∑

i=1

λi(AA
T ) =

m∑

i=1

σ2
i , (13.11)

i.e., the Frobenius norm of a matrix is the square root of the sum of the squares of its singular
values. We will also need the fact that if Q is square and QTQ = I then

‖QA‖2F = tr(QAATQT ) = tr(AATQTQ) = tr(AAT ) = ‖A‖2F . (13.12)

The same argument reveals that ‖AQ‖F = ‖A‖F . We may now establish

Proposition 13.3. Given an m-by-n matrix A (with SVD A = Y ΣXT ) and a whole number
k ≤ min{m,n} then the best (in terms of Frobenius distance) rank k approximation of A is

Ak = Y (:, 1 : k)Σ(1 : k, 1 : k)X(:, 1 : k)T .

The square of the associated approximation error is

‖A−Ak‖2F = min
rank(B)=k

‖A− B‖2F =
∑

j>k

σ2
j .

Proof: If B is m-by-n then

‖A− B‖2F = ‖Y ΣXT − B‖2F = ‖Y (Σ− Y TBX)XT‖2F = ‖Σ− Y TBX‖2F .

If B is to be chosen, among matrices of rank k, to minimize this distance then, as Σ is diagonal, so
too must Y TBX . If we denote this diagonal matrix by S then

Y TBX = S implies B = Y SXT ,

and so
‖A− B‖2F =

∑

j

(σj − sj)
2.

As the rank of B is k it follows that the best choice of the sj is sj = σj for j = 1 : k and sj = 0
there after. End of Proof.

The expression, (13.11), of the Frobenius norm in terms of singular values leads naturally to the
question of like bounds on the associated inner product. Upon associating to each unitary matrix,
U , a doubly stochastic matrix D, via Di,j = |Ui,j|2, we note that our Mixing Theorem, Prop. 5.8, is
well suited to this task. In particular,
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Proposition 13.4. If A and B lie in Cm×n then

|tr(A∗B)| ≤ σ(A)Tσ(B). (13.13)

Proof: Given the two singular value decompositions A = USV ∗ and B =WTX∗ we express

tr(A∗B) = tr(V SU∗WTX∗) = tr(X∗V SU∗WT ) = tr(Q∗SPT )

where P ≡ U∗W and Q = V ∗X are unitary and so the matrices with elements |pij|2 and |qij |2 are
doubly stochastic and so

|tr(A∗B)| = |tr((SQ)∗PT )|

≤
n∑

i=1

n∑

j=1

sitj |qijpij |

≤ 1

2

n∑

i=1

n∑

j=1

sitj|qij |2 +
1

2

n∑

i=1

n∑

j=1

sitj|pij|2

≤ sT t.

The first inequality is the triangle inequality. The second is 2|z1z2| ≤ (|z1|2 + |z2|2) and the third is
our Mixture conclusion, (5.9), on realizing that the matrix with elements (|pij|2 + |qij |2)/2 is also
doubly stochastic. End of Proof.

13.4. Principal Component Analysis∗

13.5. Independent Component Analysis∗

The data is n samples of m signals, X ∈ Rm×n. To compute the first component we maximize
the normalized kurtosis of wTX .

K(w) =
E[(wTX)4]

E2[(wTX)2]
=

n
∑n

j=1 (
∑m

i=1wiXi,j)
4

(∑n
j=1 (

∑m
i=1wiXi,j)

2
)2

We first record its gradient

∂K(w)

∂wk
= 4n

∑n
j=1 (

∑m
i=1wiXi,j)

2∑n
j=1 (

∑m
i=1wiXi,j)

3
Xk,j −

∑n
j=1 (

∑m
i=1wiXi,j)

4∑n
j=1

∑
i=1wiXi,jXk,j

(∑n
j=1 (

∑m
i=1wiXi,j)

2
)3

Hence,

∇K(w) =
4n

(yTy)2
X(y3)− 4n(y2)T (y2)

(yTy)3
Xy, where y = XTw

and ym denotes the element wise product y.^m. we then make the step w = w + t∇K(w) where t
is chosen to maximize

f(t) ≡ K(w + t∇K(w)).

To reveal its dependence on t we set

z = XT∇K(w) and express f(t) = n
p(t)

q2(t)
− 3
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where p and q are the polynomials in t

p(t) =

4∑

k=0

pkt
k and q(t) =

2∑

k=0

qkt
k

where

p4 = (z2)T z2, p3 = 4(z3)Ty, p2 = 6(y2)T z2, p1 = 4(y3)T z, p0 = (y2)Ty2

q2 = zT z, q1 = 2yTz, q0 = yTy.

It follows that the critical points of f are the roots of

r(t) = q(t)p′(t)− 2p(t)q′(t) =

4∑

k=0

rkt
k

where
r4 = 2p4q1 − p3q2, r3 = p3q1 − 2p2q2 + 4p4q0, r2 = 3p3q0 − 3p1q2,

r1 = 2p2q0 − p1q1 − 4p0q2, r0 = p1q0 − 2p0q1.

13.6. Notes and Exercises

1. Suppose that A ∈ Rm×n and b ∈ Rm. Set x+ = A+b and suppose x satisfies ATAx = AT b.
Prove that ‖x+‖ ≤ ‖x‖. (Hint: decompose x = xR + xN into its row space and null space
components. Likewise x+ = x+R+x+N . Now argue that xR = x+R and x+N = 0 and recognize that
you are almost home.)

2. Experiment with compressing the bike image below (also under Resources on our Owlspace
page). Submit labeled figures corresponding to several low rank approximations. Note:
bike.jpg is really a color file, so after saving it to your directory and entering Matlab

you might say M = imread(’bike.jpg’) and then M = M(:,:,1) prior to imagesc(M) and
colormap(’gray’).

3. We use the singular value decomposition to improve our ability to search for terms across
documents. The SVD will make associations that are latent or implicit. We denote by A our
term by document matrix and its full and reduced SVD by

A = Y ΣXT and Ak = YkΣkX
T
k .

We view a document vector as a column of A or Ak and record

Ak(:, j) = YkΣkX
T
k (:, j)
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and so, given a query vector q we consider

q̂ ≡ Σ−1
k Y T

k q

and compute the cosines

cos(θj) =
q̂TXT

k (:, j)

‖q̂‖‖XT
k (:, j)‖

4. (a) Show that
D ≡ {A : A = AT , A ≥ 0, trA = 1}

is convex.

(b) Show that the extreme points of D are the orthogonal rank one projections. (pure states)
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14. Matrix Groups∗

Matrix Groups, and their representations, are powerful tools for identifying and exploiting sym-
metries in both the physical and mathematical worlds. In particular, they allow for a significant
reduction in complexity of highly symmetric structures. For example, we will see that the determi-
nation of the 60 electronic energy levels (eigenvalues) of the C60 molecule (Buckminsterfullerene)
may be may be reduced to the determination of the roots of a few cubic polynomials.

To get there we begin with the group of orthogonal matrices, paying special attention to its finite
subgroups that preserve the symmetries of regular polyhedra in R2 and R3. We can often view such
symmetries as invariance under a permutation of vertices. This leads us to consider the important
group of permutation matrices. Our final class of finite groups will arise from restricting matrix
elements to a finite sequence of integers and using modular arithmetic during matrix multiplica-
tion. Throughout the chapter we will encounter and master these matrix groups by building their
multiplication tables, sketching their Cayley graphs, and decomposing them into disjoint unions of
conjugacy classes. We close with an investigation of group action and its application to difficult
counting problems.

14.1. Orthogonal Groups

Recall that Q ∈ Rn×n is said to be orthogonal when QTQ = I. It follows that QT = Q−1. If
S ∈ Rn×n is also orthogonal then (QS)TQS = (SQ)T (SQ) = I and so both QS and SQ are also
orthogonal matrices. A property that survives matrix multiplication is important enough to merit
a

Definition 14.1. A set of matrices, G, is a matrix group when
(1) The product of any two matrices in G is also in G, and
(2) Every matrix in G is invertible and its inverse lies in G.

It follows from the consideration that motivated this definition that

On(R) ≡ {Q ∈ Rn×n : QTQ = I}

is a matrix group. We call it the orthogonal group of transformations of Rn. It follows from the
fundamental properties of the determinant, e.g., from Eq. (3.21) and Exer. 11.4, that if QTQ = I
then

1 = det(I) = det(QTQ) = det(QT ) det(Q) = det(Q)2

and so det(Q) = ±1 for each Q ∈ On(R). By the same argument, if det(Q) = 1 and det(S) = 1
then det(QS) = 1. As a result,

SOn(R) ≡ {Q ∈ On(R) : det(Q) = 1}

is also a matrix group. We refer to it as the special orthogonal group.
We note that groups are a gateway from linear to “nonlinear” algebra. For example, On is

nothing like a subspace, for if Q ∈ On then 2Q 6∈ On!. To see what these groups do look like we
specialize to the planar, n = 2, and spatial, n = 3, cases.

Let us show that each Q ∈ O2 is either a rotation or an improper rotation, i.e., a reflection
followed by a rotation. If Q = (q1, q2) ∈ O2(R), as its first column, q1, is a unit vector it must
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be q1 = (cos θ, sin θ) for some θ. As ‖q2‖ = 1 and qT1 q2 = 0 it follows that q2 = ±(− sin θ, cos θ).
Hence Q is either

Q+ =

(
cos θ − sin θ
sin θ cos θ

)
or Q− =

(
cos θ sin θ
sin θ − cos θ

)

With e1 = (1, 0)T and e2 = (0, 1)T we note that Q+e1 = (cos θ, sin θ) and Q+e2 = (− sin θ, cos θ)
and so Q+ = Rθ is counterclockwise rotation by θ.

Next, as Q−e1 = (cos θ, sin θ) and Q−e2 = (sin θ, − cos θ) it follows that Q− = RθHe⊥2
is rotation

by θ after reflection across the line e⊥2 . We encountered such reflection matrices

He⊥2
≡ I − 2e2e

T
2 =

(
1 0
0 −1

)
,

back in (1.42). As det(Q±) = ±1 we established that each Q ∈ SO2(R) is a rotation while each Q
in the complement of SO2, i.e., Q ∈ O2(R) \ SO2(R), is a reflection followed by a rotation. We next
confirm that this remains true for n = 3.

To begin, we need to clarify precisely what we mean by a rotation in R3. The basic ingredient
is an axis a ∈ R3 with ‖a‖ = 1. We note that aaT and I − aaT are projections onto a and onto its
orthogonal complement, respectively. The third direction is achieved by the cross product matrix
of a

X(a) =




0 −a3 a2
a3 0 −a1
−a2 a1 0


 (14.1)

that we built and analyzed in Exer. 1.21. With these we find that

Ra,θ = aaT + sin(θ)X(a) + cos(θ)(I − aaT ) (14.2)

achieves counterclockwise rotation by θ about a. In Exer. 14.2 we step through the proof that Ra,θ

indeed resides in SO3(R). We now show that every matrix in SO3(R) looks like Ra,θ. To begin, we
need

Proposition 14.2. If Q ∈ SO3(R) then 1 is an eigenvalue of Q.

Proof: Each eigenvalue of Q has magnitude 1 and 1 is their product, so one of them must be 1. End
of Proof.

For Q ∈ SO3 it follows that its spectrum comes in one of three flavors. In each case, as Q is normal,
we will use the fact, Exer. 11.12, that Q has an orthonormal basis of eigenvectors.

1. If 1 is a triple eigenvalue of Q then its spectral representation takes the form Q = q1q
T
1 +

q2q
T
2 + q3q

T
3 where the qj are real and orthonormal. In which case QT = Q and I = QTQ =

q1q
T
1 + q2q

T
2 + q3q

T
3 = Q, so Q is the trivial rotation.

2. If 1 is a simple eigenvalue and −1 is a double eigenvalue, then its spectral representation takes
the form Q = q1q

T
1 − q2q

T
2 − q3q

T
3 where the qj are real and orthonormal. Again QT = Q and

I = QTQ = q1q
T
1 + q2q

T
2 + q3q

T
3 which in this case tells us that

q2q
T
2 + q3q

T
3 = I − q1q

T
1
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and so
Q = q1q

T
1 − (I − q1q

T
1 )

which, when compared to Eq. (14.2) tells us that Q is rotation by π around q1.

3. If 1 is a simple eigenvalue and −1 is not an eigenvalue then the remaining eigenvalues occur
in a complex conjugate pair, exp(±iθ), with associated eigenvectors q2 and q̄2. In this case Q
enjoys the spectral representation

Q = q1q
T
1 + exp(iθ)q2q̄

T
2 + exp(−iθ)q̄2qT2 = q1q

T
1 + 2ℜ{exp(iθ)q2q̄T2 }.

Writing q2 = x+ iy where both x and y lie in R3 we deduce from qT1 q2 = 0 that qT1 x = qT1 y = 0.
Next q̄T2 q̄2 = 0 means (x− iy)T (x− iy) = 0 means xTx = yTy = 1/2 and xTy = 0 so

q2q̄
T
2 = (x+ iy)(x− iy)T = xxT + yyT + i(yxT − xyT )

and so

ℜ{exp(iθ)q2q̄T2 } = cos(θ)(xxT + yyT )− sin(θ)(yxT − xyT ).

As a result we find

Q = q1q
T
1 − 2 sin(θ)(yxT − xyT ) + 2 cos(θ)(xxT + yyT ).

Next, as 2(xxT + yyT ) is a rank 2 orthogonal projection that annihilates q1 we find

2(xxT + yyT ) = I − q1q
T
1 .

Similarly, in building a cross vector from −2(yxT − xyT ) we find something of unit norm that
is orthogonal to both x and y, hence can be only ±q1.

So SO3(R) is the group of rotations.

14.2. Symmetry Groups

Given a geometric figure F (e.g., triangle, square, tetrahedron,...) the rotation group of F is
the group of all Q ∈ SO3(R) for which QF = F . The full symmetry group of F is the group of
all Q ∈ O3(R) for which QF = F .

We begin with planar figures – denoting the full symmetry group of the regular (equal sides, equal
angles) n–sided polygon by Dihn (for Dihedral) and its associated group of rotations by SDihn.

The equilateral triangle, Figure 14.1, is invariant under rotations by 0, 2π/3 and 4π/3 and so
its rotation group is

SDih3 = {I, R2π/3, R4π/3} (14.3)

where

R2π/3 =

(
cos(2π/3) − sin(2π/3)
sin(2π/3) cos(2π/3)

)
=

1

2

(
−1 −

√
3√

3 −1

)
,

R4π/3 =

(
cos(4π/3) − sin(4π/3)
sin(4π/3) cos(4π/3)

)
=

1

2

(
−1

√
3

−
√
3 −1

)
.

To confirm that this is a group compute R2π/3R4π/3. You might also check that R2π/3 generates
SDih3 in the sense that all members are powers of R2π/3.
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Figure 14.1. The equilateral triangle and square.

To arrive at the full symmetry group, Dih3, we append the three reflections in lines through
the vertices v1, v2 and v3 indicated in Figure 14.1. With v3 = (0, 1), v2 = (

√
3,−1)/2 and v1 =

(−
√
3,−1)/2 we arrive at the associated reflections

Hv3 = I − 2v⊥3 (v
⊥
3 )

T =

(
−1 0
0 1

)
,

Hv2 = I − 2v⊥2 (v
⊥
2 )

T =
1

2

(
1 −

√
3

−
√
3 −1

)
= R2π/3Hv3 ,

Hv1 = I − 2v⊥1 (v
⊥
1 )

T =
1

2

(
1

√
3√

3 −1

)
= Hv3R2π/3.

(14.4)

It follows that Dih3 is generated by products of R2π/3 and Hv3 . We capture the full story in the
multiplication table below.

Dih3 I R2π/3 R4π/3 Hv3 Hv2 Hv1

I I R2π/3 R4π/3 Hv3 Hv2 Hv1

R2π/3 R2π/3 R4π/3 I Hv2 Hv1 Hv3

R4π/3 R4π/3 I R2π/3 Hv1 Hv3 Hv2

Hv3 Hv3 Hv1 Hv2 I R4π/3 R2π/3

Hv2 Hv2 Hv3 Hv1 R2π/3 I R4π/3

Hv1 Hv1 Hv2 Hv3 R4π/3 R2π/3 I

Table 14.1. The multiplication table for Dih3. The products are ordered by left multiplication of
the row matrix onto the column matrix.

We encode the symmetries of the square, see Figure 14.1, via four rotation matrices and four
reflection matrices. SDih4 = {I, Rπ/2, Rπ, R3π/2} where

Rπ/2 =

(
0 1
−1 0

)
, Rπ =

(
−1 0
0 −1

)
, and R3π/2 =

(
0 −1
1 0

)
.

Note that Rπ/2 generates SDih4. The square however enjoys 4 additional symmetries, namely the

reflections about lines through e1 = (1, 0), e2 = (0, 1), d1 = (1, 1)/
√
2 and d2 = (−1, 1)/

√
2. Namely,

from Eq. (1.42),

He1 =

(
1 0
0 −1

)
Hd1 =

(
0 1
1 0

)
He2 =

(
−1 0
0 1

)
Hd2 =

(
0 −1
−1 0

)
.
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Being reflections, each of these is its own inverse. Products of reflections however, though not
reflections, are rotations and products of rotations and reflections are reflections. Its group structure
is fully revealed in its multiplication table

Dih4 I Rπ/2 Rπ R3π/2 He1 Hd1 He2 Hd2

I I Rπ/2 Rπ R3π/2 He1 Hd1 He2 Hd2

Rπ/2 Rπ/2 Rπ R3π/2 I Hd2 He1 Hd1 He2

Rπ Rπ R3π/2 I Rπ/2 He2 Hd2 He1 Hd1

R3π/2 R3π/2 I Rπ/2 Rπ Hd1 He2 Hd2 He1

He1 He1 Hd1 He2 Hd2 I Rπ/2 Rπ R3π/2

Hd1 Hd1 He2 Hd2 He1 R3π/2 I Rπ/2 Rπ

He2 He2 Hd2 He1 Hd1 Rπ R3π/2 I Rπ/2

Hd2 Hd2 He1 Hd1 He2 Rπ/2 Rπ R3π/2 I

Table 14.2. The multiplication table for Dih4. The products are ordered by left multiplication of
the row matrix onto the column matrix.

We discern from the table that Rπ/2 and He1 together generate Dih4 in the sense that every
matrix in Dih4 is a product of powers of Rπ/2 and He1 . This in turn provides yet another means by
which to visualize Dih4.

Definition 14.3. Given a group G we suppose that S is a symmetric subset of G in the sense
that for each s ∈ S its inverse, s−1 also lies in S. The Cayley graph of G with respect to S,
written Cay(G, S), has as its vertex set the elements of G, with two vertices, g and h, joined by
an edge whenever h = sg for some s ∈ S.

For example, in Figure 14.2, we have drawn the Cayley Graphs Cay(Dih3, {R2π/3, R4π/3, Hv3})
and Cay(Dih4, {Rπ/2, R3π/2, He1}).
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π
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H
e

2
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1

H
e

1

H
d

2

Figure 14.2. (A) The Cayley Graph of Dih3 with respect to {R2π/3, R4π/3, Hv3}. The vertices
of the graph are elements of Dih3 and edges are colored blue for multiplication by R2π/3 or R4π/3

and red for multiplication by Hv3 . (B) The Cayley Graph of Dih4 with respect to {Rπ/2, R3π/2, He1}
with edges colored blue for multiplication by Rπ/2 or R3π/2 and red for multiplication by He1.

We have observed that one reflection suffices to fill out the full group.

Proposition 14.4. Let F ⊂ R3 be a geometric figure with full symmetry group G and rotation
group SG = G ∩ SO3(R). If F admits a reflection symmetry H then G = SG ∪ SGH .
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Proof: Suppose A ∈ G\R. Then det(A) = −1 and det(AJ) = 1, so AJ ∈ R. Thus A = (AJ)J ∈ RJ .
End of Proof.

We next consider symmetries of the regular tetrahedron, Figure 14.3.

e
1

e
3

e
2

v
2

v
4

v
3

v
1

Figure 14.3. A tetrahedron embedded in a cube - and its associated coordinate system.

To build concrete symmtries we express the vertices in Figure 14.3 in terms of the coordinates

e1 = (1 0 0)T , e2 = (0 1 0)T , e3 = (0 0 1)T

as

v1 = (−1 − 1 − 1)T , v2 = (1 − 1 − 1)T , v3 = (−1 − 1 1)T , v4 = (1 1 1)T .

We first note that lines from the origin through a vertex pass through the centroid of the opposite
face of the tetrahedron. As such, to each vertex we may assign rotation by 2π/3 and 4π/3. Recalling
our parametric form, Eq. (14.2), we arrive at the 8 distinct rotation matrices

Rv4,2π/3 =





0 1 0
0 0 1
1 0 0



 , Rv4,4π/3 =





0 0 1
1 0 0
0 1 0



 , Rv3,2π/3 =





0 1 0
0 0 −1
−1 0 0



 , Rv3,4π/3 =





0 0 −1
1 0 0
0 −1 0



 ,

Rv1,2π/3 =





0 −1 0
0 0 −1
1 0 0



 , Rv1,4π/3 =





0 0 1
−1 0 0
0 −1 0



 , Rv2,2π/3 =





0 −1 0
0 0 1
−1 0 0



 , Rv2,4π/3 =





0 0 −1
−1 0 0
0 1 0



 .

(14.5)
Next there are rotations by π on the three axes through centers of opposite faces of cube:

Re1,π =

(
1 0 0
0 −1 0
0 0 −1

)
, Re2,π =

(
−1 0 0
0 1 0
0 0 −1

)
, and Re3,π =

(
−1 0 0
0 −1 0
0 0 1

)
(14.6)

These, together with the identity, comprise the 12 elements of STet, the rotation group of the
tetrahedron. On confirmation of its group status via computation of its multiplication table we find
that Rv4,2π/3 and Re1,π generate STet. We illustrate it via the Cayley Graph of Figure 14.4.

251



R
d,2

I R
d,4

R
a,4

R
b,2

R
e

3

R
c,2

R
e

2

R
b,4

R
e

1

R
c,4

R
a,2

Figure 14.4. The Cayley Graph of STet with respect to {Rv4,2π/3, Rv4,4π/3, Re1,π}, with edges col-
ored blue for action by Rv4,2π/3 orRv4,4π/3 and red for action by Re1,π. We note that (Re1,πRv4,2π/3)

3 =
I and that the Cayley graph is a truncated tetrahedron.

We will investigate the cube in the exercises and so move onto the icosahedron, illustrated in
Figure 14.5. It has 12 vertices, 20 faces and 30 edges.

Each vertex of the icosahedron lies on an axis of 5–fold symmetry. We illustrate one such axis,
through vertices 1 and 4, in Figure 14.5(A). There are 6 such axes, and for each axis there are 4
distinct (non–identity) rotations, for a total of 24 rotations.

Each centroid of a face lies on an axis of 3–fold symmetry. We illustrate one such axis, through
faces 1-5-6 and 4-7-8, in Figure 14.5(B). There are 10 such axes, and for each axis there are 2
distinct (non–identity) rotations, for a total of 20 rotations.

Each midpoint of an edge lies on an axis of 2–fold symmetry. We illustrate one such axis, through
edges 9-2 and 3-12, in Figure 14.5(C). There are 15 such axes, and for each axis there is one distinct
(non–identity) rotation, for a total of 15 rotations.

With the identity element, SIco, the group of rotations of the icosahedron, has 1+24+20+15=60
elements.
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Figure 14.5. Axes of symmetry of the icosahedron. We have numbered the 12 vertices, with
fontsize decreasing with distance from vertex 12 to indicate depth. (A) The icosahedron is invariant
to rotation about the red axis by multiples of 2π/5. (B) The icosahedron is invariant to rotation
about the red axis by multiples of 2π/3. (C) The icosahedron is invariant to rotation about the red
axis by multiples of 2π/2. icosasym.m

We denote by RA, RB and RC the rotations depicted in Figure 14.5(A-C) respectively. We will
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argue in Exer. 14.3 that

RB = RCR
4
ARCRA. (14.7)

By similar reasoning we can prove that RA and RC generate SIco. The associated Cayley graph,
Cay(SIco, {RA, R

−1
A , RC}), is the truncated icosahedron depicted in Figure 14.6. This object is

better known as a football, or soccer ball in the U.S., or “Buckyball” following the discovery of the
Buckminsterfullerenes.

(A)
(B) (C)

Figure 14.6. The Cayley Graph Cay(SIco, {RA, R
−1
A , RC}) is a Buckyball. (A) To illustrate

“truncation” we have superimposed the icosahedron and Buckyball. Truncation of the 12 vertices
produces 12 pentagons. The resulting 60 vertices are linked by the edge fragments remaining from
the icosahedron to form 20 hexagons. (B) In the Cayley Graph each vertex is a unique element of
SIco. The two blue edges incident at a vertex correspond to multiplication by RA and R−1

A while the
red edge corresponds to multiplication by RC . (C) This is the same view as (B) but with pentagonal
shading (dark in foreground) to aid in the determination of depth. bucky.m

14.3. Permutation Groups

In the previous section we equated the symmetries of the triangle with the permutation of its
vertices, and associated displacements. The associated permutation matrices of a given order com-
prise the most well studied of all of the groups. The simplest permutation matrix is the Elementary
Permutation Matrix introduced in Eq. (3.16) as a tool for row swapping in Gaussian Elimination.
For example,

P(12) =



0 1 0
1 0 0
0 0 1


 ,

is obtained by interchanging rows 1 and 2 of the 3-by-3 identity matrix. There are two other
Elementary Permutations, P(13) and P(23), as well as two interesting compositions

P(123) ≡ P(13)P(12) =



0 0 1
1 0 0
0 1 0


 and P(132) ≡ P(12)P(13) =



0 1 0
0 0 1
1 0 0


 . (14.8)

The subscript of each permutation is called a cycle and is customary shorthand for the more
cumbersome notation of the previous section. For example, rather than writing (1, 2, 3) → (2, 1, 3)
we write (12) and read that as “1 goes to 2” and “2 goes into the starting slot, in this case, 1.” In
addition, regarding Eq. (14.8), rather than writing (1, 2, 3) → (2, 3, 1) we write (123) and say “1
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goes to 2, 2 goes to 3, and 3 cycles round to the start, 1.” With this convention it should be clear
that P(312) = P(123).

Together with I = P() these five matrices comprise a group that we will designate Per3. To show
that Per3 is indeed a group we compile its multiplication table.

Per3 I P(12) P(13) P(23) P(123) P(132)

I I P(12) P(13) P(23) P(123) P(132)

P(12) P(12) I P(132) P(123) P(23) P(13)

P(13) P(13) P(123) I P(132) P(12) P(23)

P(23) P(23) P(132) P(123) I P(13) P(12)

P(123) P(123) P(13) P(23) P(12) P(132) I
P(132) P(132) P(23) P(12) P(13) I P(123)

Table 14.3. The multiplication table for Per3. The products are ordered by left multiplication of
the row matrix onto the column matrix.

We discern from this table that P(12) and P(123) generate Per3 and proceed to illustrate its Cayley
Graph in Figure 14.7.
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(132)
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(13)

P
(12)
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(23)
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P
(123)

P
(132)

P
(12)

P
(23)

P
(13)

Figure 14.7. Three Cayley graphs of Per3. (A) Cay(Per3, {P(12), P(123)}). Red edges correspond
to multiplication by P(123), blue edges to multiplication by P(12).

(B) Cay(Per3, {P(12), P(13), P(23)}). Red edges correspond to multiplication by P(13), blue edges
to multiplication by P(12) and black edges to multiplication by P(23).

(C) Cay(Per3,Alt3). Red edges correspond to multiplication by P(123) and P(132), blue edges to
multiplication by I.

We learn from Tab. 14.3 and Figure 14.7 that

Alt3 ≡ {I, P(123), P(132)} (14.9)

is a subgroup of Per3. It is referred to as the alternating group and looking back over our small
list of groups we recognize that Alt3 and Per3 closely resemble the triangle groups SDih3 and Dih3.
This notion is made precise through

Definition 14.5 Two groups, G and M , are said to be isomorphic if there exists a function φ,
called an isomorphism, that takes G to M and satisfies
(a) φ is one–to–one, i.e., if g1 6= g2 then φ(g1) 6= φ(g2).
(b) φ is onto, i.e., for each m ∈M there exists a g ∈ G for which m = φ(g).
(c) φ respects composition, i.e., φ(g1g2) = φ(g1)φ(g2).

When G and M are isomorphic we write G ∼M .
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A function that satisfies (a) and (b) is called a bijection. A function that satisfies (c) is called
a homomorphism. For example, we construct an isomorphism, φ, between Alt3 and SDih3 by
taking generator to generator, i.e.,

φ(P(123)) ≡ R2π/3 (14.10)

and then define its action on the remainder so as to satisfy property (c) and the respective multi-
plication tables. Namely,

φ(P(132)) = φ(P(123)P(123)) = φ(P(123))φ(P(123)) = R2π/3R2π/3 = R4π/3 (14.11)

and
φ(I) = φ(P(123)P(132)) = φ(P(123))φ(P(132)) = R2π/3R4π/3 = I. (14.12)

These groups are both cyclic in the sense they are generated by powers of a single element. The
most elementary cyclic groups are

Proposition 14.6. For integer n > 0 the set {0, 1, . . . , n−1} together with operation of addition
modulo n is a cyclic group, denoted Zn.

Proof: The identity element is 0. If z ∈ Zn is nonzero then n− z ∈ Zn and z+(n− z) = n = 0 mod
n and hence each member has an inverse. Zn is cyclic because each element is a “power” of 1. End
of Proof.

It follows that Alt3 ∼ SDih3 ∼ Z3. More generally, cyclic groups of the same size must be
isomorphic, and so SDihn ∼ Zn for all n.

Returning to Alt3 ∼ SDih3 we may extend it to an isomorphism of Per3 and Dih3 by connecting
the additional generators via

φ(P(12)) ≡ Hv3 (14.13)

and then, as above simply follow their lead. In particular

φ(P(13)) = φ(P(12)P(123)) = φ(P(12))φ(P(123)) = Hv3R4π/3 = Hv2

φ(P(23)) = φ(P(13)P(132)) = φ(P(13))φ(P(132)) = Hv2R4π/3 = Hv1 .
(14.14)

As we consider Pern for large n there will be an increasing variety of possible cycle shapes and
combinations. In navigating this terrain it will helpful to know that

Proposition 14.7 Each Pσ ∈ Pern can be written uniquely (up to order) as a product Pσ1 · · ·Pσk
of disjoint permutations.

Proof: Argue by induction, using the fact that disjoint permutations commute with one another.
See Exer. 14.5. End of Proof.

This permits us to define Altn to be the subgroup of those matrices in Pern that can be expressed
as the product of an even number of elementary permutations (2–cycles). For example the 12 = 4!/2
matrices of Alt4 are the identity, three order-2 matrices

P(12)(34), P(13)(24), P(14)(23), (14.15)

and eight order-3 matrices

P(132), P(123) = P 2
(132), P(142), P(241) = P 2

(142), P(143), P(341) = P 2
(143), P(243), P(342) = P 2

(243). (14.16)
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We note the strong resemblance to STet, and construct an isomorphism that maps the eight
rotations of order 3 to the eight permutations of order 3 and the 3 rotations of order 2 to the 3
permutations of order 2. In fact, like STet, one matrix of each order suffices to generate Alt4. Hence,
on completing

φ(Re1,π) ≡ P(12)(34) and φ(Rv4,2π/3) ≡ P(132)

to respect multiplication establishes the isomorphism

STet ∼ Alt4. (14.17)

In addition to multiplication tables and Cayley graphs we will also find it convenient to view
groups as unions of conjugacy classes. The conjugacy class of g ∈ G is

Conjg(G) ≡ {h−1gh : h ∈ G}.

Note that ConjI(G) is always the singleton {I} and that if G is abelian then Conjg(G) = {g} for
every g ∈ G. For the nonabelian group Per3 we glean from its multiplication table, Tab. 14.3,

Conj(12)(Per3) = {B−1P(12)B : B ∈ Per3}
= {I−1P(12)I, P

−1
(12)P(12)P(12), P

−1
(13)P(12)P(13), P

−1
(23)P(12)P(23), P

−1
(123)P(12)P(123), P

−1
(132)P(12)P(132)}

= {P(12), P(12), P(13)P(12)P(13), P(23)P(12)P(23), P(132)P(12)P(123), P(123)P(12)P(132)}
= {P(12), P(12), P(13)P(132), P(23)P(123), P(132)P(23), P(123)P(13)}
= {P(12), P(12), P(23), P(13), P(13), P(23)}
= {P(12), P(13), P(23)}.

This tedious calculation is easily automated, but our chief interest is in discerning patterns. As we
proceed to compute conjugacy classes of the remaining elements of Per3 we find only one additional
class. Hence

I, {P(12), P(13), P(23)} and {P(123), P(132)}. (14.18)

comprise the three conjugacy classes of Per3 – and we quickly observe that their members indeed
exhaust Per3 and, more interestingly, each class contains only cycles of the same “type.” We now
prove that these observations hold for all Pern.

Definition 14.8. If σ ∈ Pern and σ =
∏
σi is its decomposition into disjoint cycles then the jth

element of the cycle type of σ is typej(σ) ≡ #{σi : |σi| = j}, j = 1, 2, . . . , n.

For example, the types of cycles appearing in (14.18) are

type((1)(2)(3)) = (3, 0, 0), type((12)(3)) = (1, 1, 0) and type((123)) = (0, 0, 1).

More generally, suppose Pσ and Pπ belong to Pern. If σ = (σ1, σ2, · · · , σk) we say σ takes σm to
σm+1 and write σ(σm) = σm+1. We next define π ◦ σ = (π(σ1), π(σ2), · · · , π(σk)) and prove

PπPσ = Pπ◦σPπ, (14.19)

by applying each to ej, the jth coordinate vector. Starting with the left side of (14.19) we find

PπPσej = Pπeσ(j) = eπ(σ(j)),

256



while on the right
Pπ◦σPπej = Pπ◦σeπ(j) = e(π◦σ)(π(j)),

hence it remains to confirm that

(π ◦ σ)(π(j)) = (π(σ1), π(σ2), . . . , π(σk))(π(j)) =

{
π(j) if j 6∈ σ

π(σi+1) if j = σi,

is indeed precisely π(σ(j)). On rearranging Eq. (14.19) we find PπPσP
−1
π = Pπ◦σ and so every

member of the conjugacy class of a k-cycle is a k-cycle. Conversely, if Pσ and Pφ are k-cycles then
Pπ will do where π(σj) ≡ φj.

Next suppose that Pσ = Pσ1Pσ2 is the product of disjoint cycles and that PπPσP
−1
π = Pφ. To see

that Pφ has the same cycle type as Pσ note that, using (14.19),

PπPσ = PπPσ1Pσ2 = Pπ◦σ1PπPσ2 = Pπ◦σ1Pπ◦σ2Pπ

and hence
Pφ = PπPσP

−1
π = Pπ◦σ1Pπ◦σ2 . (14.20)

As the cycle lengths of π ◦ σ1 and π ◦ σ2 are the same as σ1 and σ2 respectively, and the cycle
decomposition of Pφ is unique (Prop. 14.2) it follows from (14.20) that Pσ and Pφ have the same
cycle type. Conversely, if Pσ = Pσ1Pσ2 and Pφ = Pφ1Pφ2 are two permutations with identical cycle
types then we may define Pπ = Pπ1Pπ2 where πk(σkj ) = φk(j) and confirm that PπPσP

−1
π = Pφ. As

this argument generalizes immediately to arbitrary cycle types, we have proven

Proposition 14.9 The conjugacy class of P ∈ Pern is the set of permutation matrices with the
same cycle type as P . That is

ConjP (Pern) = {Q ∈ Pern : type(Q) = type(P )}.

The conjugacy classes of Pern are therefore disjoint and their union is all of Pern.

Regarding the sizes of our conjugacy classes, in building a 2-cycle in Pern there are n choices
for the first element and (n− 1) choices for the second. As P(ij) = P(ji) we have over counted by a
factor of 2 hence ∣∣Conj(12)(Pern)

∣∣ = n(n− 1)/2.

More generally, for k-cycles
∣∣Conj(12···k)(Pern)

∣∣ = n!

k(n− k)!
.

For products of disjoint cycles

∣∣Conj(12)(34)(Pern)
∣∣ = n(n− 1)

2

(n− 2)(n− 3)

2

1

2
=

n!

8(n− 4)!

and ∣∣Conj(12)(345)(Pern)
∣∣ = n(n− 1)

2

(n− 2)(n− 3)(n− 4)

3
=

n!

6(n− 5)!
.

With this we can present the conjugacy classes of Pern in tabular form. For example,
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Rep I P(12) P(123) P(12)(34) P(1234)

Size 1 6 8 3 6

Table 14.4. The Conjugacy Classes of Per4. Here Rep stands for representative – note that we
may choose any member with the same cycle type.

Rep I P(12) P(123) P(12)(34) P(1234) P(12)(345) P(12345)

Size 1 10 20 15 30 20 24

Table 14.5. The Conjugacy Classes of Per5.

The conjugacy classes of Altn are closely related to those of Pern, however the explicit calculation

Conj(123)(Alt4) 6= Conj(132)(Alt4)

already indicates that they are not defined simply by their type. The answer will depend on the
nature of Altn as a subgroup of Pern. Cosets and quotient groups are excellent tools for studying
subgroups.

14.4. Linear, Free, and Quotient Groups

In this section we begin with the infinite groups of invertible matrices and then select finite
subgroups by restricting our matrix elements to finite sets of integers.

We begin with the General Linear Group,

GLn(R) = {A ∈ Rn×n : det(A) 6= 0},
of invertible n-by-n real matrices and its subgroup, called the Special Linear Group,

SLn(R) = {A ∈ Rn×n : det(A) = 1},
of n-by-n real matrices with unit determinant, and its subgroup

SLn(Z) = {A ∈ Zn×n : det(A) = 1}
of integer matrices with determinant 1. We note that both

A =

(
1 2
0 1

)
and B =

(
1 0
2 1

)
(14.21)

lie in SL2(Z) and proceed to show that they generate a free subgroup. This will give us an indication
of the vastness of SL2(Z) and a start on the construction (to be finished in Chapter 16) of regular
graphs with large girth.

A group G is called free if there is a subset S of G such that every element of G can be written
in one and only one way as a product of finitely many elements of S and their inverses (disregarding
trivial variations such as AB−1 = AC−1CB−1). An important example is

Proposition 14.10. If G is the collection of all products of {A,A−1, B, B−1} for the A and B of
Eq. (14.21) then G is free.

Proof: We note that elements of G belong to one of four types

258



(a) starting and finishing with a power of A:

Ak1Bℓ1Ak2Bℓ2 · · ·AkrBℓrAkr+1,

(b) starting and finishing with a power of B:

Bk1Aℓ1Bk2Aℓ2 · · ·BkrAℓrBkr+1,

(c) starting with a power of A and finishing with a power of B:

Ak1Bℓ1Ak2Bℓ2 · · ·AkrBℓr ,

(d) starting with a power of B and finishing with a power of A:

Bk1Aℓ1Bk2Aℓ2 · · ·BkrAℓr .

To show that G is free we must show that none of these products reduce to the identity. The
simplest way to see this is by arguing that they move vectors from place to place. The places we
have in mind are

E = {x ∈ R2 : |x2| > |x1|} and F = {x ∈ R2 : |x1| > |x2|}.
Recall that we showed in Exer. 1.3 that An takes E to F while Bn takes F to E for all positive
integer n. Please confirm that in fact these same mappings hold for all negative integer powers as
well.

Applying these results a product of type (a) we find, that if x ∈ E then Akr+1x ∈ F and so
BℓrAkr+1x ∈ E and that continuing in this fashion produces

Ak1Bℓ1Ak2Bℓ2 · · ·AkrBℓrAkr+1x ∈ F.

That is, products of type (a) take vectors in E to vectors in F . As E and F are disjoint it follows
that no such product acts like I.

By identical reasoning it follows that products of type (b) take F to E and so can not be I.
This reasoning however does not apply to products of type (c) or (d). We therefore transform

them to products of type (a) or (b). In particular given, W3 = Ak1Bℓ1 · · ·AkrBℓr , of type (c) we
choose a power k 6= k1 and note that A−kW3A

k is a product of type (a) and so A−kW3A
k 6= I.

It follows W3 6= AkIA−k = I. By identical reasoning products of type (d) may be transformed to
products of type (b). End of Proof.

This result gives us a sense of the infinite scope of SL2(Z). Things become finite and more
concrete upon reducing all integers modulo q. Recall that modq(x) is the remainder of x after
division by q. More precisely

modq(x) ≡ x− q · floor(x/q).
For prime q we may then define the Field Fq comprised of the integers {0, 1, . . . , q − 1} where
addition and multiplication are reduced modulo q. For example, with q = 3 we find

0 + 0 = 0, 0 + 1 = 1, 0 + 2 = 2, 1 + 1 = 2, 2 + 1 = 0, 2 + 2 = 1

0 · 0 = 0, 0 · 1 = 0, 0 · 2 = 0, 1 · 1 = 1, 2 · 1 = 2, 2 · 2 = 1.

With this we may define the unit determinant n-by-n matrices with elements in Fq,

SLn(q) = {A ∈ Fn×q : det(A) = 1}.
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For example SL2(2) is comprised of the identity and the five matrices

A1 =
(
1 1
0 1

)
, A2 =

(
1 0
1 1

)
, A3 =

(
0 1
1 0

)
, A4 =

(
1 1
1 0

)
, A5 = A2

4 =
(
0 1
1 1

)
. (14.22)

The first three are order 2 and the second two are order 3 and we note that SL2(2) is generated by
A1 and A4 and that

φ(P(12)) ≡ A1 and φ(P(123)) ≡ A4 (14.23)

establishes an isomorphism between SL2(2) and Per3.

We note that the A and B of Eq. (14.21) lie in SL2(3) and that they generate SL2(3) in the sense
that every matrix in SL2(3) is a finite product of A and B. We illustrate this in Figure 14.8 via the
Cayley Graph of SL2(3) with respect to S = {A,B,A−1, B−1} where

A−1 =

(
1 1
0 1

)
and B−1 =

(
1 0
1 1

)
(14.24)
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Figure 14.8. The Cayley graph Cay(SL2(3), S) flat and rolled.

Regarding the size of SL2(q) we note that there are q2 − 1 ways of choosing the first (nonzero)
column in (

a b
c d

)
.

Once that is done we must choose b and d to assure that modq(ad− bc) = 1 and so

|SL2(q)| = q(q2 − 1). (14.25)

There is a natural map that associates groups of linear transformations of Rn+1 to groups of
Möbius transformations of Rn

∞ ≡ Rn∪{∞}. To fix ideas we develop this for n = 1. Given a matrix

A =

(
a b
c d

)
,

in GL2(R) we associate the Möbius Transformation of R∞,

φA(x) =
ax+ b

cx+ d
, (14.26)

where, if c = 0 we define φA(∞) = ∞ while if c 6= 0 we set φA(∞) = a/c and φA(−d/c) = ∞.
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Given A1 and A2 in GL2(R) it is not difficult to show that φA2(φA1(x)) = φA2A1(x) and so
the class of Möbius Transformations, M(R∞), form a group under composition. Of course several
matrices get mapped to the same Möbius transformation. The root redundancy is captured by the
set of matrices in GL2(R) that map onto the identity in M(R∞),

NG ≡ {A ∈ GL2(R) : φA(x) = x} = {rI : r ∈ R \ {0}}. (14.27)

We now proceed to show that φ induces an isomorphism, Φ, between the cosets of NG and the
elements of M(R∞). A right coset (left coset) of NG is the collection of all right (left) multiples of
some B ∈ GL2(R) by elements of NG. Namely

NGB = {rB : r ∈ R \ {0}} = BNG = {Br : r ∈ R \ {0}}.
We so define the map from cosets of NG to Möbius transformations

Φ(NGA) = φA (14.28)

and confirm that it is one-to-one and onto. If Φ(NGA) = Φ(NGB) then φA = φB and so (φB−1 ◦
φA)(x) = x and so B−1A ∈ NG and so A is a nonzero multiple of B and so in the same coset. We
have therefore proven that Φ is one-to-one.

We next define multiplication of cosets as

NGA ∗NGB ≡ NGAB = {rAB : r ∈ R \ {0}},
and note that under this operation the cosets of NG constitute a group and that

Φ(NGA ∗NGB) = Φ(NGAB) = φAB = φA ◦ φB = Φ(NGA) ◦ Φ(NGB).

It is time that we named this set of cosets of NG. A subgroup is said to be normal when its left and
right cosets coincide. The set of cosets of a normal subgroup defines the quotient group, written
GL2(R)/NG. We have proven that this quotient is isomorphic to the Möbius transformations of
R∞. As the latter can also be shown to be isomorphic to the symmetry group of the projective line,
we write

PGL2(R) ≡ GL2(R)/NG,

and speak of it as the Projective General Linear group. This procedure is considerably more
general than our one example. For example, if we restrict φA to those A ∈ SL2(R) then the
associated kernel,

NS ≡ {A ∈ SL2(R) : φA(x) = x} = {I,−I}, (14.29)

is a restriction of NG. The cosets of NS again comprise a group under

NSA ∗NSB ≡ NSAB = {AB,−AB},
that defines

PSL2(R) ≡ SL2(R)/NS,

the Projective Special Linear group. Via Φ(NSA) = φA we find PSL2(R) isomorphic to the
subgroup of Möbius transformations for which ad− bc = 1.

We may also vary the field, for example PSL2(Z) is the modular group and PSL2(q) = SL2(q)/NS

where NS = {I, (q−1)I}. As such PSL2(3) is isomorphic to the group of 12 Möbius transformations:
the identity (

1 0
0 1

)
,

(
2 0
0 2

)
→ x
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three order 2 elements
(
0 2
1 0

)
,
(
0 1
2 0

)
→ 2

x
,
(
1 1
1 2

)
,
(
2 2
2 1

)
→ x+ 1

x+ 2
,
(
2 1
1 1

)
,
(
1 2
2 2

)
→ 2x+ 1

x+ 1

and 8 elements of order 3
(

1 1
0 1

)

,

(

2 2
0 2

)

→ x+ 1,

(

1 2
0 1

)

,

(

2 1
0 2

)

→ x+ 2 = (x+ 1) ◦ (x+ 1),

(

0 2
1 1

)

,

(

0 1
2 2

)

→
2

x+ 1
,

(

2 2
1 0

)

,

(

1 1
2 0

)

→
2x+ 2

x
=

2

x+ 1
◦

2

x+ 1
(

1 0
1 1

)

,

(

2 0
2 2

)

→
x

x+ 1
,

(

1 0
2 1

)

,

(

2 0
1 2

)

→
x

2x+ 1
=

x

x+ 1
◦

x

x+ 1
(

0 1
2 1

)

,

(

0 2
1 2

)

→
1

2x+ 1
,

(

1 2
1 0

)

,

(

2 1
2 0

)

→
x+ 2

x
=

1

2x+ 1
◦

1

2x+ 1

Proposition 14.11. PSL2(3) is isomorphic to Alt4(R).

We close with an investigation of quotient groups, and more generally cosets, as a means to
better approach conjugacy classes.

Proposition 14.12. If H is a subgroup of G then H is normal if and only if it is a union of
conjugacy classes.

Proof: Suppose H is a union of conjugacy classes. Then, for each h ∈ H and g ∈ G it follows that
g−1hg ∈ H . That is hg ∈ gH and g−1h ∈ Hg−1 for each h ∈ H , and so Hg ⊂ gH and g−1H ⊂ Hg−1

for each g ∈ G. It follows that the left and right cosets of H coincide, i.e., that H is normal.
Conversely, suppose that H is normal. Then, for each g ∈ G it follows Hg = gH . That is,

g−1Hg = H , and so g−1hg ∈ H for each h ∈ H . Hence Conjh(G) ⊂ H for each h ∈ H . And so

H =
⋃

h∈H
h ⊂

⋃

h∈H
Conjh(G) ⊂ H,

and so equality must hold throughout. End of Proof.

If H is a subgroup of G then the number of left cosets of H in G is called the index of H in G,
and written [G : H ]. The main result is.

Proposition 14.13. Lagrange’s Theorem. If H is a subgroup of the group G then [G : H ] =
|G|/|H|.

Proof: Let’s first show that distinct cosets are actually disjoint. If aH ∩ bH 6= ∅ then there exist
h1, h2 ∈ H such that ah1 = bh2. Hence a = bh2h

−1
1 and so ah = bh2h

−1
1 h ∈ bH for each h ∈ H . This

shows that aH ⊂ bH . By like reasoning we may write b = ah1h
−1
2 and so conclude that bH ⊂ aH .

Although disjoint, we note that (ba−1)ah = bh and so (ba−1) acts as an isomorphism of aH and
bH . It follows that |aH| = |bH| = |H|.

Finally, for each a ∈ G we note that a ∈ aH and so G is the union of its distinct cosets. As all
cosets have the same size it follows that that size, |H|, divides the size of |G|. In other words, the
number of distinct cosets of H is |G|/|H|. End of Proof.
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The smallest index is two and in that case H and its complement, G \H , are the two left cosets
of H . As they are also the two right cosets we have established: If [G : H ] = 2 then H is normal.
Index 2 subgroups also have the nice property that

ab ∈ H iff a, b ∈ H or a, b ∈ G \H. (14.30)

To see this, suppose a, b ∈ G \H . It follows that aH = bH = G \H (for if aH = H then a ∈ H .)
Now if ab ∈ G\H then as above abH = aH = bH = G\H . But then a−1abH = a−1aH = H which
contradicts b 6∈ H .

Proposition 14.14. Altn is the only subgroup of Pern of index 2.

Proof: If H is a subgroup of Pern of index 2 then H is normal. Hence if it contains one element of a
conjugacy class then it contains the whole class. It follows from Prop. 14.9 that if H contains one
element of a certain cycle structure then it contains all elements of that cycle structure. Now if H
contains the 2–cycles, then being a group it contains all products of 2–cycles, but this gives all of
Pern. Hence H does not contain a 2–cycle.

We next deduce from Eq. (14.30) that H contains all even products of two cycles, i.e., H = Altn.
End of Proof.

With this result we can now establish the isomorphism

Alt5 ∼ SIco. (14.31)

This is accomplished by identifying 5 objects faithfully permuted by SIco. This will in turn trans-
late into an injective homomorphism of SIco into Per5. As its image is a subgroup of Per5 with
60 elements, we will conclude, by above, that this subgroup is Alt5. One way to “see” these 5
distinguished objects is to return to the 15 two–fold symmetries of Figure 14.5(C). With regard to
Figure 14.9 we reconstruct the red axis through the midpoints of segments 9:2 and 3:12. The plane
through these two segments bisects segments 5:11 and 10:8 and begets a second red axis orthogonal
to the first. The plane through these latter segments bisects segments 6:1 and 4:7 and begets a
third red axis, orthogonal to the first two.

2

8
7

10
9

4

1

12
11

6
5

3

Figure 14.9. A red coordinate frame and a family of 6 black edges permuted by SIco.

Let us denote the red coordinate frame in Figure 14.9 by C3:12. By rotation of 2π/5 about the
1:4 axis (recall Figure 14.5(A)) we discern 4 more distinct coordinate frames, C12:8 = RAC3:12,
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C8:7 = R2
AC3:12, C7:11 = R3

AC3:12 and C11:3 = R4
AC3:12. Each R ∈ SIco acts to permute these 5

frames. To see that this mapping is injective note that if an element of SIco leaves each frame
invariant then it leaves each set of 6 black edges invariant - and hence leaves all 30 edges of the
icosahedron invariant, and hence can be only the identity element. It follows that SIco is isomorphic
to a 60 element subgroup of Per5. Our claim, Eq. (14.31), now follows from Prop. 14.14.

This isomorphism and the Cayley graph illustrated in Figure 14.6 will permit us to use the
considerable body of knowledge regarding Alt5 to understand the electronic structure (in the sense
of §12.5) of the Buckyball. This body of knowledge begins with conjugacy classes.

We first observe that the size of the conjugacy class of g ∈ G can be expressed in terms of the
size of its centralizer

Centg(G) = {h ∈ G : hg = gh}.
We establish in Exer. 14.15 that each Centg(G) is a subgroup of G and that

|Conjg(G)| = |G : Centg(G)| = |G|/|Centg(G)|. (14.32)

From here we can now classify conjugacy classes in Altn.

Proposition 14.15. Suppose P ∈ Altn. If P commutes with an odd element of Pern then

ConjP (Pern) = ConjP (Altn),

else ConjP (Altn) and ConjP(12)PP(12)
(Altn) are disjoint and the same size and

ConjP (Pern) = ConjP (Altn) ∪ ConjP(12)PP(12)
(Altn).

Proof: Suppose that PR = RP for odd R and that Y ∈ ConjP (Pern). The latter implies that
Y = H−1PH for some H ∈ Pern. If H is even then Y is even and Y ∈ ConjP (Altn); while if H is
odd then RH ∈ Altn and

Y = H−1PH = H−1R−1RPH = H−1R−1PRH = (RH)−1P (RH),

so again Y ∈ ConjP (Altn). Thus ConjP (Pern) ⊂ ConjP (Altn) and so ConjP (Pern) = ConjP (Altn).
Conversely, if P does not commute with any odd permutations then CentP (Pern) = CentP (Altn)

and so Eq. (14.32) implies that

|ConjP (Altn)| = |Altn : CentP (Altn)| = |Pern : CentP (Altn)|/2
= |Pern : CentP (Pern)|/2 = |ConjP (Pern)|/2.

Next, we observe that
{HPH−1 : H is odd} = ConjP−1

(12)
PP(12)

(Altn)

since every odd permutation has the form P(12)A for some A ∈ Altn. Now

ConjP (Pern) = {HPH−1 : H is even} ∪ {HPH−1 : H is odd}
= ConjP (Altn) ∪ ConjP(12)PP(12)

(Altn).

Since |ConjP (Altn)| = |ConjP (Pern)|/2 it follows that ConjP (Altn) and ConjP(12)PP(12)
(Altn) are

disjoint and of the same size. End of Proof.
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The nonidentity elements of Alt4 have cycle types (0, 2, 0, 0) and (1, 0, 1, 0). As (12)(34) commutes
with the odd permutation (12) Prop. 14.15 implies that

Conj(12)(34)(Alt4) = Conj(12)(34)(Per4) = {(12)(34), (13)(24), (14)(23)}.

The 3–cycle (123) does not commute with any odd permutations (Exer. 1416) and so Prop. 14.15
reveals (for (12)−1(123)(12) = (132))

Conj(123)(Per4) = Conj(123)(Alt4) ∪ Conj(132)(Alt4)

and |Conj(123)(Alt4)| = |Conj(132)(Alt4)| = 4. We record this information in Tab. 14.6.

Rep I P(123) P(132) P(12)(34)

Size 1 4 4 3

Table 14.6. The Conjugacy Classes of Alt4.

The nonidentity elements of Alt5 have cycle types (2, 0, 1, 0, 0), (1, 2, 0, 0, 0) and (0, 0, 0, 0, 1).
The elements (123) and (23)(45) commute with the odd (45), but (12345) commutes with no odd
(Exer. 1416) permutation hence, by Prop. 14.15, the nonidentity conjugacy classes are

Conj(12)(34)(Alt5) = Conj(12)(34)(Per5), Conj(123)(Alt5) = Conj(123)(Per5),

Conj(12345)(Alt5) and Conj(13452)(Alt5),
(14.33)

with sizes
|Conj(12)(34)(Alt5)| = 15, |Conj(123)(Alt5)| = 20,

and |Conj(12345)(Alt5)| = |Conj(13452)(Alt5)| = 12.
(14.34)

We record this information in Tab. 14.7.

Rep I P(123) P(12)(34) P(12345) P(13452)

Size 1 20 15 12 12

Table 14.7. The Conjugacy Classes of Alt5.

14.5. Group Action and Counting Theory

In the previous section we have seen how Lagrange’s Theorem, Prop. 14.13, permitted us through
(14.32) to count the number of elements in conjugacy classes in Alt4 and Alt5. Via the notion of
Group Action we will develop significant generalizations of this line of thought. This will permit
us to count the number of permissible isomers in Chapter 16. As an added benefit, the notion of
Group Action is a natural precursor of the representation theory of the next chapter.

An action of a group G on a set X is a homomorphism φ from G into PerX , the set of permu-
tations of elements of X . Given x ∈ X we study its stabilizer

Stabx(G) ≡ {g ∈ G : gx = x}

and its orbit
Orbx(G) ≡ {gx : g ∈ G}. (14.35)
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For example, the dihedral group Dih4 acts on the solid square X = {(x1, x2) : |x1| ≤ 1, |x2| ≤ 1}.
Every element stabilizes the origin, i.e., Stab(0,0)(Dih4) = Dih4. The stabilizer of any point (other
than the origin) on any of the diagonals (see Figure 14.1) is the two element group of the identity
and the proper reflection. For example, if 0 < a ≤ 1,

Stab(a,a)(Dih4) = {I,Hd1} and Stab(0,a)(Dih4) = {I,He2}.

The identity is the only group element that stabilizes the remaining points. The orbit of the origin
is just the origin, Orb((0,0))(Dih4) = (0, 0). The orbit of any point (other than the origin) on a
diagonal hits 4 places, e.g.,

Orb(a,a)(Dih4) = {(a, a), (−a, a), (−a,−a), (a,−a)}
Orb(0,a)(Dih4) = {(0, a), (−a, 0), (0,−a), (a, 0)}

while orbits of remaining points hit 8 places, e.g., if 0 < a < 1,

Orb(1,a)(Dih4) = {(1, a), (−1, a), (−1,−a), (1,−a), (−a, 1), (−a,−1), (a,−1), (a, 1)}.

In this case we note that each Stabx(Dih4) is a subgroup of Dih4 and that the product of the sizes,
|Stabx(Dih4)||Orbx(Dih4)|, simply the size, |Dih4|. Both of these observations are true in general.

Proposition 14.16. If the group G acts on the set X then Stabx(G) is a subgroup of G for each
x ∈ X .

Proof: Exercise 14.. End of Proof.

Proposition 14.17. If the group G acts on the set X then Orbx(G) is isomorphic to the set of
left cosets of Stabx(G), for each x ∈ X .

Proof: Consider the mapping ψ(gStabx(G)) = gx. To see that it is injective note that gx = hx iff
g−1hx = x, i.e., iff g−1h ∈ Stabx(G). The latter is equivalent to h ∈ gStabx(G). As h trivially
lies in hStabx(G) and distinct cosets are disjoint we have shown that gx = hx iff gStabx(G) =
hStabx(G). To see that ψ is surjective note that if y ∈ Orbx(G) then y = gx for some g ∈ G and
so ψ(gStabx(G)) = gx = y. End of Proof.

Proposition 14.18. If the finite group G acts on the set X then

|Stabx(G)||Orbx(G)| = |G| (14.36)

for each x ∈ X .

Proof: The previous result states that |Orbx(G)| is the number of left cosets of Stabx(G). The claim
(14.36) then follows from Lagrange’s Theorem, Prop. 14.13. End of Proof.

Already this has important applications. For example, we can deduce that the number of ways
to choose k objects from n objects is

n!

k!(n− k)!
. (14.37)
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To see this, let X be the set of k element subsets of {1, 2, . . . , n}. Our goal is compute its size, |X|.
The group Pern acts on X via

g{a1, a2, . . . , ak} = {ga1, ga2, . . . , gak}.

It follows that the stabilizer of x = {1, 2, . . . , k} is the group of permutations that don’t mix
{1, 2, . . . , k} and {k+1, k+2, . . . , n}. That is, Stabx(Pern) = Perk×Pern−k. It follows from (14.36)
that

|Orbx(Pern)| =
|Pern|

|Stabx(Pern)|
=

n!

k!(n− k)!
.

It remains only to note that this action has but one orbit, i.e, that X = Orbx(Pern). We call such
actions transitive. This generalizes nicely (see Exer. 14.18) to the statement that the number of
sequences of r1 1’s, r2 2’s, . . . , and rk k’s is

(r1 + r2 + · · ·+ rk)!

r1!r2! · · · rk!
. (14.38)

For example the number of sequences of 1 C, 2 G, 3 A and 4 T nucleotides is 10!/(1!2!3!4!) = 12600.
If this 10-nucleotide being has a circular genome then sequences that are mere rotations or reflections
of one another would be equivalent. We ask then for the number of distinct genomes. To set the
ideas lets start a bit smaller, say, how many genomes are there with 2 C’s and 2 A’s? There are 6
sequences and we picture each nucleotide to occupy a vertex of the square. As Dih4 acts on these
vertices we may consider the associated orbits. In particular the two orbits

OrbCAAC(Dih4) = {CAAC,AACC,ACCA,CCAA} and OrbCACA(Dih4) = {CACA,ACAC}

exhaust the 6 sequences - and we recognize that this process reveals that there are two distinct
genomes. We next ask, can we count without listing?

Proposition 14.19. If the finite group G acts on the finite set X then there exist xi ∈ X ,
i = 1, 2, . . . , m such that

Orbxi(G) ∩Orbxj(G) = ∅ if i 6= j and X =
m⋃

i=1

Orbxi(G).

By analogy to the group index we will denote the number of orbits of the action G y X by
[G : X ]. This number is determined by the size of G and the size of the sets fixed by individual
group elements

Fixg(X) ≡ {x ∈ X : gx = x}.
We note that if g is a nonzero rotation then no points are fixed while if g is reflection across e1 or
e2 then it fixes 2 midpoints while if g is reflection across d1 or d2 then it fixes 2 vertices. In general

Proposition 14.20. If the finite group G acts on the finite set X then the number of orbits is
the average number of fixed points, i.e.,

[G : X ] =
1

|G|
∑

g∈G
|Fixg(X)| (14.39)
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Proof: Define F ≡ {(g, x) ∈ G×X : gx = x} and note that

|F | =
∑

g∈G
|{x : gx = x}|

We start with - suppose {xi : i = 1, . . . , [G : X ]} to be representatives of the orbits of G y X .
Then

1

|G|
∑

x∈X
|Stabx(G)| =

∑

x∈X

1

|Orbx(G)|
=

[G:X]∑

i=1

∑

x∈Orbxi(G)

1

|Orbx(G)|
=

[G:X]∑

i=1

1 = [G : X ].

End of Proof.

Lets first check our small genome, with X = C2A2 please confirm that

|FixX(I)| = 6, |FixX(Rπ/2)| = |FixX(R3π/2)| = 0 and

|FixX(Rπ)| = |FixX(He2)| = |FixX(He1)| = |FixX(Hd2)| = |FixX(Hd1)| = 2
(14.40)

and so [Dih4 : C2A2] = 16/8 = 2 as above. Now this should help in larger problems when Fix is
easier to compute than Orb.

Lets try it out on [Dih10 : CG2A3T 4]. As there is only 1 C no nontrivial rotation can fix a
sequence. For a reflection to fix a sequence, it must be reflection across a diagonal connecting a
C vertex to an A vertex and the sequence must be symmetric across this axis. There are 5 such
diagonals, and for each axis there are

2
(1 + 1 + 2)!

1!1!2!
= 24

sequences (for there are 2 choices of AC/CA and then we place 1 A, 1 G and 2 T’s on a side and
then reflect). Hence there are

[Dih10 : CG
2A3T 4] =

12600 + 5 · 24
20

= 636

distinct genomes with 1 C, 2 G’s, 3 A’s and 4 T’s.

Patterns: The action of G on X induces an action of G on Y X , the set of functions from X to Y ,

Orbf (G) = {f ◦ g : g ∈ G}
The distinct orbits are called patterns.

Weights: If each y ∈ Y has weight w(y) it lifts to f ∈ Y X via

w(f) ≡
∏

x∈X
w(f(x)).

For h ∈ Orbf(G) we know h = f ◦ g for some g ∈ G and so

w(h) =
∏

x∈X
w(f(gx)) = w(f),

(because {gx : x ∈ X} = X). Hence each element of an orbit/pattern has the same weight - so we
just call this the weight of the pattern - w(F ).
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Proposition 14.21. Suppose that X and Y are finite sets and that the finite group G acts on
X . This induces an action G y Y X . If w is a weight function on Y then w extends to Y X and
is constant on orbits of Gy Y X . If fi lie in the [G : Y X ] distinct orbits then

[G:Y X ]∑

i=1

w(fi) =
1

|G|
∑

g∈G

n∏

k=1

(
∑

y∈Y
w(y)k

)ck(g)

. (14.41)

Proof: Suppose w0 is a legitimate weight and gather

S(w0) ≡ {f ∈ Y X : w(f) = w0}.
As G acts on S(w0) it follows from Prop. 14.20 that the number of patterns, relative to S, is

[G : S(w0)] =
1

|G|
∑

g∈G
|Fixg(S(w0))| (14.42)

Hence, on multiplication of both sides by w0 and summing over w0 we find

[G:Y X ]∑

i=1

w(fi) =
1

|G|
∑

w0

∑

g∈G
|Fixg(S(w0))|w0 (14.43)

Exchanging sums we work out the right hand side
∑

w0

|Fixg(S(w0))|w0 =
∑

fg=f

w(f)

and now invoke the disjoint cycle decomposition g = g1g2 · · · gn and the associated disjoint union
X = X1 ∪X2 ∪ · · · ∪Xn. We now show that fg = f iff f is constant on each Xi. Hence

∑

fg=f

w(f) =
∑

fg=f

∏

x∈X
w(f(x)) =

∑

f(Xi)=yi∈Y

n∏

i=1

∏

x∈Xi

w(f(x))

=
∑

yi∈Y

n∏

i=1

w(yi)
|Xi| =

n∏

i=1

∑

y∈Y
w(y)|Xi| =

n∏

k=1

(
∑

y∈Y
w(y)k

)ck(g)

,

because ck(g) = |{i : |Xi| = k}|. Inserting this into (14.43) we arrive at (14.41) as claimed. End of

Proof.

Returning to our small genome, let X be the 4 vertices of the square, G = Dih4, Y the labels C
and A, with weights w(A) = x and w(C) = y. We need the decompositions, with type

I = (1)(2)(3)(4), {4, 0, 0, 0}
Rπ/2 = (1234), {0, 0, 0, 1}
Rπ = (13)(24), {0, 2, 0, 0}

R3π/2 = (1432), {0, 0, 0, 1}
Re1 = (12)(34), {0, 2, 0, 0}
Re2 = (14)(32), {0, 2, 0, 0}
Rd1 = (1)(3)(24), {2, 1, 0, 0}
Rd2 = (2)(4)(13), {2, 1, 0, 0}
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The full inventory is

1

8

(
(x+ y)4 + 2(x4 + y4) + 3(x2 + y2)2 + 2(x+ y)2(x2 + y2)

)
= x4 + x3y + 2x2y2 + xy3 + y4.

The coefficient of x2y2 is indeed 2, the number of A2C2 genomes.
Onto the big genome, the identity is type c1 = 10. The five reflections through vertices are of

type (c1 = 2, c2 = 4). The five reflections through edge midpoints are of type c2 = 5. Rπ/5 and
R6π/5 is of type c10 = 1. R2π/5 and R7π/5 is of type c5 = 2. R3π/5 and R8π/5 is of type c10 = 1. R4π/5

and R9π/5 is of type c5 = 2. Rπ is of type c2 = 5. So the full inventory is

1

20

(
(A+G + C + T )10 + 5(A+G+ C + T )2(A2 +G2 + C2 + T 2)4 + 6(A2 +G2 + C2 + T 2)5

+ 4(A10 +G10 + C10 + T 10) + 4(A5 +G5 + C5 + T 5)2
)
.

The coefficient of CG2A3T 4 is indeed 636.

We will need the lovely

∞∑

n=0

PPern(f(x), . . . , f(x
n)) = exp

( ∞∑

k=1

f(xk)/k

)
. (14.44)

Also, if A = Pern and C is constructed by restriction to bijective f then

C(x) = PAltn(c(x), . . . , c(x
n))− PPern(c(x), . . . , c(x

n)). (14.45)

14.6. Notes and Exercises

For a thorough introduction to abstract algebra see Goodman (1997). For more on Cayley
Graphs see Krebs and Shaheen (2011). Our work on conjugacy classes was drawn from James and
Liebeck (2001). Pólya’s Theory of counting is drawn from Polya and Read (2011).

1. Please justify each of the three claims made in the proof of Prop. 14.2.

2. (a) Confirm that the rotation matrix, Ra,θ, of Eq. (14.2) is an orthogonal matrix. Hint: Use
the properties of X(a) established in Exer. 1.21.

(b) Show that det(Ra,θ) = 1. Hint: Ra,0 = I is easy. At the other extreme, Ra,π = 2aaT − I
has a two dimensional eigenspace, v3, associated with the double eigenvalue, −1. Now assume
0 < θ < π. Confirm that Ra,θa = a so that one eigenvalue λ1 = 1. Confirm that the other two

eigenvalues are nonreal complex conjugates, λ2 and λ2. Now confirm that trRa,θ = 1 + 2 cos θ
and deduce that ℜλ2 = cos θ. Now confirm that |λ2| = 1 and deduce that λ2 = cos θ + i sin θ
and finally that det(Ra,θ) = λ1λ2λ2 = 1.

3. Use icosasym.m to rotate Figure 14.5(C) and confirm that RC takes vertices

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) to (7, 9, 12, 6, 8, 4, 1, 5, 2, 11, 10, 3).

RB clearly takes vertex 6 to vertex 1. Confirm that RCR
4
ARCRA also takes 6 to 1. Confirm

that RCR
4
ARCRA = RB on vertices 1 and 5 as well.
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4. The cube has four 3–fold axes through pairs of opposite vertices, giving eight rotations. There
are also three 4–fold axes through the centroids of opposite faces, adding nine rotations, Finally,
the cube has six 2–fold axes through centers of opposite edges, adding 6 rotations. With the
identity, we have 24 rotations. Construct each rotatation matrix. Show that its dual, the
octahedron, has the same rotation group.

5. Prove Prop. 14.7.

6. Regarding the argument that resulted in Prop. 14.9 please show that if Pσ and Pφ are k−cycles
in Pern and π(σj) ≡ φj then

PπPσP
−1
π = Pφ.

7. Given S ∈ Rn×n show that

S = {A ∈ GLn(R) : A
TSA = S}

is a group. This is a generalization of the orthogonal group in the sense that S = On if S = I.
In the case that

S =

(
0 1
−1 0

)

show that S = {A ∈ GL2(R) : det(A) = 1}. In higher dimensions, with

S =

(
0 In

−In 0

)

where In is the n-by-n identity matrix, S is known as the symplectic group.

8. (a) Show that

U1 ≡
{(

1 x
0 1

)
: x ∈ R

}
and L1 ≡

{(
1 0
y 1

)
: y ∈ R

}

are subgroups of SL2(R).

(b) Show that every A ∈ SL2(R) can be expressed as a finite product of matrices in U1 and L1.

9. Define and study the derived subgroup following the lovely examples in Grove, Algebra.

10. Show that each element of the Modular group takes the upper half plane to itself. Hint: Show

ℑ(f(z)) = ℑz
|cz + d|2 .

11. Confirm that PSL2(3) is isomorphic to Alt4(R).

12. Use Prop. 14.12 and Table 14.6 to show that the Klein 4-group

V4 ≡ {I, P(12)(34), P(13)(24), P(14)(23)} (14.46)

is a normal subgroup of Alt4. Compute the three cosets of the quotient group Alt4/V4 and
show that this quotient is isomorphic to Alt3.

13. Show that V4 is abelian and isomorphic to Z2 × Z2.
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14. Show that SDih4 is a normal subgroup of Dih4 and that Dih4/SDih4 ∼ V4.

15. Prove that Centg(G) is a subgroup of G and that the mapping f(g−1xg) ≡ gCentx(G) is a
bijection of Conjx(G) and the set of left cosets of Centx(G). Explain how Eq. (14.32) follows
from your work. Hint: Show that g−1xg = h−1xh iff g−1Centx(G) = h−1Centx(G).

16. Show that (123) can not commute with an odd element of Per4. Show that (12345) can not
commute with an odd element of Per5.

17. By Lagrange’s Theorem there are 5 = |Alt5|/|Alt4| left cosets of Alt4 in Alt5. Explain why
{(), (125), (152), (345), (354)} is a complete set of representatives of these 5 cosets.

18. Let X be the set of sequences of r1 1’s, r2 2’s, . . . , and rk k’s. Show that

|X| = (r1 + r2 + · · ·+ rk)!

r1!r2! · · · rk!
.

Hint: Set n = r1 + r2 + · · · + rk and show that Pern acts on X transitively. Show that the
stabilizer of

(1, . . . , 1, 2, . . . , 2, . . . , k, . . . , k)

with r1 ones, r2 2 etc., is Perr1 × Perr2 × · · · × Perrk .

19. Confirm the 8 equations in (14.40).

20. Find the number of distinct genomes with 2 C, 2 G, 2 A and 2 T nucleotides.
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15. Group Representation Theory∗

Representation Theory is essentially a conduit by which the results of linear algebra can be
brought to bear on the study of groups. In some cases this conduit has established a bridge
between two groups of very different origin. For example, Wiles use of representation theory to
equate certain modular groups with groups associated with elliptic curves is at the heart of his
resolution of Fermat’s Last Theorem. In other cases Representation Theory serves to systematically
reduce the complexity of large structured problems by expressing them in terms of irreducible, and
often tractable, objects.

After building the requisite representation and character theory in the first two sections we will
show how it may be used to explicitly determine the electronic structure of the Buckyball – that is
all 60 eigenvalues of the adjacency matrix of the graph in Figure 14.6. The theory is even simpler,
and in fact takes on a familiar character, when applied to abelian groups. We close the chapter
with both the theory, and application, of Fourier analysis on abelian Groups.

15.1. Representations

A representation of a group G is a pair (V, π) where V is a complex vector space and π
is a homomorphism from G to GL(V ), the group of invertible linear transformations of V . We
call d = dimC(V ) the degree of (V, π). We note that as π is a homomorphism it follows that
π(I) = π(gg−1) = π(g)π(g−1) = π(g)π(g)−1 = I. That is, π takes the identity element of G to the
identity transformation in GL(V ).

For example, if (C, π) is a (degree 1) representation of Alt3 = {(123), (123)2, (123)3} then

1 = π(I) = π((123))3,

hence π((123)) is a cube root of unity. The three cube roots give rise to three distinct representations

π1(()) = 1, π1((123)) = 1, π1(132) = 1

π(2)(()) = 1, π(2)((123)) = exp(2πi/3), π(2)(132) = exp(−2πi/3)

π3(()) = 1, π3((123)) = exp(−2πi/3), π(2)(132) = exp(2πi/3).

(15.1)

We will soon see that this is a complete set of representations of Alt3.
We next construct a few concrete representations of Per3. Every group sports the constant

representation, (C, π1), here
π1(σ) = 1, ∀σ ∈ Per3, (15.2)

and every permutation group features the sign representation, (C, π(2)), here

π(2)(σ) =

{
1 if σ is even

−1 if σ is odd.
(15.3)

These are both of degree 1. Note the isomorphism between Per3 and Dih3 constructed in Eq. (14.10)–
(14.14) is a representation that we will denote (C2, π3). For convenience we reproduce it here

π3(I) = I, π3((12)) = Ha⊥ , π3((13)) = Hb⊥ ,

π3((23)) = Hc⊥, π3((123)) = R2π/3, π3((132)) = R4π/3.
(15.4)

There is also a natural degree three representation, namely (C3, σ 7→ Pσ).
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In addition to the constant representation the next most common example is (C[G], RG) where
C[G] is the vector space of complex valued functions on G and RG is defined via

(RG(h)f)(g) ≡ f(gh). (15.5)

To confirm that it is a homomorphism we compute

(RG(h1h2)f)(g) = f(gh1h2) and (RG(h1)(RG(h2)f))(g) = (RG(h2)f)(gh1) = f(gh1h2),

and so indeed RG(h1h2) = RG(h1)RG(h2). We call (C[G], RG) the right regular representation
of G. The role of the right regular representation in exploring the adjacency matrix, A, of a Cayley
graph Cay(G, S) is exposed on refraining from coordinates and instead interpreting A as a linear
transformation of C[G]. In particular, for f ∈ C[G] we recognize Af ∈ C[G] as

(Af)(g) =
∑

s∈S
f(gs) =

∑

s∈S
(RG(s)f)(g), for each g ∈ G. (15.6)

On writing Eq. (15.6) more succinctly as

ACay(G,S) =
∑

s∈S
RG(s) (15.7)

we can better expose the role of RG in the eigendecomposition of A. For if S is a conjugacy class
of G then, for each g ∈ G,

ARG(g) =
∑

s∈S
RG(s)RG(g) =

∑

s∈S
RG(gsg

−1)RG(g) =
∑

s∈S
RG(gsg

−1g) =
∑

s∈S
RG(gs) = RG(g)A.

Now if Ax = λx then RG(g)Ax = ARG(g)x = λRG(g)x and so each eigenspace of A is a G–
invariant subspace of RG. The true power of (15.7) is revealed on showing that the right regular
representation is similar to a direct sum of simpler objects, the so–called irreducible representations.

A representation, (V, π), of a group G is called irreducible when 0 and V are its only G–
invariant subspaces and reducible when (V, π) can be expressed as the direct sum, (V1⊕V2, π1⊕π(2))
where V1 and V2 are both proper G–invariant subspaces.

Regarding Per3 we note that the constant and sign representations, (15.2) and (15.3), are both
degree 1 and so are irreducible. As the (C2, π3) defined in (15.4) has degree 2, any proper nonzero
Per3–invariant subspace, W , must be one dimensional. Now π3(P )W = W for every P ∈ Per3
means that BW = W for every B ∈ Dih3. In other words, there exists a w ∈ C2 that is an
eigenvector for every B ∈ Dih3. As R2π/3 and Ha⊥ share no eigenvectors we conclude that π3 is

irreducible. We will soon see that π1, π
(2) and π3 are a complete set of irreducible representations

in the sense that every representation of Per3 is similar to a unique (up to equivalence) direct sum
of π1, π

(2) and π3. In particular, we will show that

RPer3 ∼ π1 ⊕ π(2) ⊕ 2π3. (15.8)

This will follow from a general theory that establishes the existence of such a similarity transform.
We will offer an explicit construction in §15.5. The general theory begins with the study of unitary
representations.
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Proposition 15.1. If (V, π) is a unitary representation of the group G, i.e., π(g)∗ = π(g−1) ∀ g ∈
G, then π is either irreducible or reducible.

Proof: If π is not irreducible then there exists a proper G-invariant subspace W ⊂ V . We denote
the orthogonal complement of W by W⊥ and note that V = W ⊕W⊥. We now show that W⊥ is
G-invariant, i.e., that π(g)W⊥ ⊥W for every g ∈ G. So, with w ∈ W and v ∈ W⊥ we find, as π is
unitary, that

〈π(g)v, w〉 = 〈π(g−1)π(g)v, π(g−1)w〉 = 〈v, π(g−1)w〉 = 0,

The final equality follows from π(g−1)w ∈ W as W is invariant under π(g−1). End of Proof.

You should confirm that right regular representation, (C[G], RG), is unitary. It will suffice that
every representation is similar to a unitary representation.

Proposition 15.2. If (V, π) is a representation of the group G then there exists a T ∈ GL(V )
such that φ(g) ≡ Tπ(g)T−1 is a unitary representation of G.

Proof: Note that
Π ≡

∑

g∈G
π(g)∗π(g)

is self-adjoint and positive definite and so defines a weighted inner product, 〈v, w〉Π = 〈Πv, w〉, on
V . Now

〈π(h)v, π(h)w〉Π =
∑

g∈G
〈π(g)π(h)v, π(g)π(h)w〉 =

∑

g∈G
〈π(gh)v, π(gh)w〉 = 〈v, w〉Π

where the final equality stems from the realization that groups satisfy {gh : g ∈ G} = G for each
h ∈ G. Finally, it follows from Exer. 12.3 that φ(h) ≡ Π1/2π(h)Π−1/2 is unitary. End of Proof.

We have now shown that every representation is similar to a representation that is either reducible
or irreducible. This is enough to establish our first expansion.

Proposition 15.3. (Maschke’s Theorem.) Each representation, (V, π), of a group G may be
completely reduced in the sense that there exist irreducible representations {(Vj, πj)}sj=1 such
that

V = V1 ⊕ V2 ⊕ · · · ⊕ Vs and π ∼ π1 ⊕ π(2) ⊕ · · · ⊕ πs.

Proof: If dimC(V ) = 1 then V has no proper subspaces and so (V, π) is irreducible and so completely
reduced. We now argue by induction. Suppose that representations of degree≤ nmay be completely
reduced and consider the unitary representation (V, π) of degree n+ 1. If (V, π) is irreducible then
it is completely reduced. If (V, π) is not irreducible then V = V1 ⊕ V2 where each Vj is a proper
subspace that is G-invariant under π. It follows that each dim Vj ≤ n and so, by the inductive
hypothesis, each (Vj , π|Vj) may be completely reduced. As such, each Vj is the direct sum

Vj = Vj,1 ⊕ Vj,2 ⊕ · · · ⊕ Vj,mj

of proper G-invariant subspaces and (Vj,k, π|Vj,k) is irreducible. On gathering we find

V = V1,1 ⊕ V1,2 ⊕ · · · ⊕ V1,m1 ⊕ V2,1 ⊕ V2,2 ⊕ · · · ⊕ V2,m2
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and so (V, π) is completely reduced. End of Proof.

This proof does not reveal the number s, of irreducible representations nor does is tell us how
often a given representation appears. The first step toward a more quantitative expansion is the
following Lemma of Schur.

Proposition 15.4. Schur’s Lemma. Suppose that (V1, π1) and (V2, π
(2)) are two irreducible

representations of the group G. If they are intertwined by the operator T , i.e.,

Tπ1(g) = π(2)(g)T, ∀ g ∈ G,

then
(a) If T 6= 0 then T is invertible.
(b) If π1 6∼ π(2) then T = 0.
(c) If π1 = π(2) then T = λI for some λ ∈ C.

Proof: If v ∈ N (T ) then Tπ1(g)v = π(2)(g)Tv = 0 and so N (T ) is G-invariant under π1. As (V1, π1)
is irreducible it follows that N (T ) = {0} or N (T ) = V . It follows that if T 6= 0 then T is injective.

Next, we interpret the right side of Tπ1(g)y = π(2)(g)Ty as π(2)(g) acting on R(T ) and note
that the left side always lies in R(T ). It follows that R(T ) is G-invariant under π(2). Again, by
irreducibility we know that R(T ) = {0} or R(T ) = V , from which it follows that if T 6= 0 then T
is surjective.

Claim (a) follows: if T 6= 0 then T is invertible. Regarding claim (b), if π1 6∼ π(2) then T is not
invertible and so by (a) T = 0.

Regarding claim (c), as T and I both commute with π1 it follows that so too does λI − T for
any λ ∈ C. It then follows from (a) that λI − T is either zero or invertible. We can exclude the
latter by choosing λ to be an eigenvalue of T and so force the former, i.e., T = λI as claimed. End
of Proof.

This lemma reveals that individual elements of irreducible representations are orthogonal to one
another in the inner product of C[G]. As such the next result is often referred to as the Grand
Orthogonality Theorem or Wonderful Orthogonality Theorem in the applied literature.

Proposition 15.5. If (V, φ) is a unitary irreducible representation of G of degree n then

〈φij, φrs〉 =
|G|
n
δi,rδj,s. (15.9)

If (W,π) is a unitary irreducible representation of G that is not similar to (V, φ) then

〈φij, πrs〉 = 0. (15.10)

Proof: We start with the latter by constructing the matrices

T ≡
∑

g∈G
π(g)Ej,sφ(g

−1), (15.11)

where Ej,s is the m-by-n matrix with the value one in row j and column s and zeros elsewhere. For
h ∈ G we find

π(h)T =
∑

g∈G
π(hg)Ej,sφ(g

−1) =
∑

x∈G
π(x)Ej,sφ(x

−1h) = Tφ(h),
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and so T intertwines π and φ. As these two are presumed not similar it follows from Schur’s Lemma
that T = 0. The (i, r) element of Eq. (15.11) becomes

0 =
∑

g∈G
πij(g)Ej,sφsr(g

−1) =
∑

g∈G
πij(g)Ej,sφrs(g) = 〈πij, φrs〉

and we obtain Eq. (15.10).
If we substitute π for φ in Eq. (15.11) we arrive at a matrix

T ≡
∑

g∈G
π(g)Ej,sπ(g

−1), (15.12)

that commutes with π. Again by Schur’s Lemma it follows that T = λI and so the nondiagonal
elements of Eq. (15.12) must vanish. That is, for i 6= r,

0 =
∑

g∈G
πij(g)Ej,sπsr(g

−1) =
∑

g∈G
πij(g)Ej,sπrs(g) = 〈πij, πrs〉 (15.13)

When i = r we find

λ =
∑

g∈G
πij(g)Ej,sπs,i(g

−1) =
∑

g∈G
πij(g)Ej,sπis(g) = 〈πij, πis〉 (15.14)

It remains to compute λ. The trace of Eq. (15.12) reveals

λn =
∑

g∈G
tr(π(g)Ej,sπ(g

−1)) = |G|tr(Ej,s) = |G|δj,s. (15.15)

Combining Eqs. (15.13)–(15.15) establishes Eq. (15.9). End of Proof.

Proposition 15.6. The number of equivalence classes of irreducible representations of G does
not exceed |G|. If {(V (k), π(k)) : 1 ≤ k ≤ s} is a set of representatives from each equivalence class
of irreducible representations of G, then

Q ≡ {
√
dkπ

(k)
ij : 1 ≤ i, j ≤ dk, 1 ≤ k ≤ s} where dk = dim(V (k)), (15.16)

is an orthonormal set in C[G] and hence s ≤ d21 + · · ·+ d2s ≤ |G|.

Proof: Each equivalence class contains a unitary member. As dimC[G] = |G| no linearly independent
set in C[G] can have more than |G| members. But Prop. 15.5 states that the entries of inequivalent
unitary representations form an orthogonal set of nonzero members of C[G]. Hence the number of
such classes is bounded by |G|. End of Proof.

15.2. Characters

The trace was the final ingredient in the proof of Prop. 15.5. We now use it to define the
character of a representation, π,

χπ(g) ≡ tr(π(g)). (15.17)

The character of an irreducible representation is called an irreducible character.
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Representations of degree one are irreducible and coincide with their characters and so, recalling
(15.1), we note that we have already found 3 irreducible characters of Alt3. As |Alt3| = 3 it follows
from the previous proposition, Prop. 15.6, that there are no other distinct characters. We find it
best to display them through the character table below.

Alt3 () (123) (132)
χ1 1 1 1
χ2 1 ω3 ω2

3

χ3 1 ω2
3 ω3

Table 15.1. The character table for Alt3.

A short calculation reveals that its columns in Tab. 15.1 are orthogonal in the natural inner
product on C[Alt3]. That is,

〈χj, χk〉 ≡
2∑

m=0

χj((123)
m)χk((123)m) = 3δj,k.

Hence, the characters of Alt3 provide an orthogonal basis for C[Alt3]. We will see that such is the
case for all abelian groups. In the general setting we work over a natural subspace of C[G] dictated
by the fact that characters can not distinguish conjugate elements. To be precise, as characters are
traces of homomorphisms, it follows that

χπ(h
−1gh) = tr(π(h−1gh)) = tr(π(h−1)π(g)π(h)) = tr(π(h)−1π(g)π(h))

= tr(π(h)−1π(h)π(g)) = tr(π(g)) = χπ(g).

In other words, characters are constant on conjugacy classes. This feeds the general definition. The
class functions of a group G is the subspace

Class[G] ≡ {f ∈ C[G] : f(g) = f(h−1gh) ∀g and h ∈ G}. (15.18)

We proceed to construct three characters for Per3 and show that they comprise an orthogonal basis
for Class[Per3]. Defining χj = tr(πj) for the three πj in (15.2)–(15.4) we arrive at Table 15.2.

Per3 I (12) (123)
χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

Table 15.2. The character table for Per3. As characters are constant on conjugacy classes we may
index each column with a representative from each conjugacy class. Recall that conjugacy classes
on Pern are determined solely by cycle type.

We note that the characters of Per3 satisfy

〈χj , χk〉 = 6δj,k = |Per3|δj,k
and so comprise an orthogonal basis for the class functions of Per3. Returning to the general case
we find,
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Proposition 15.7. If π and φ are both irreducible representations of G then

〈χπ, χφ〉 =
{
|G| if π ∼ φ,

0, otherwise.

Conversely, if 〈χπ, χπ〉 = |G| then π is irreducible.

Proof: We set m ≡ deg(π) and n ≡ deg(φ) and develop

〈χπ, χφ〉 =
∑

g∈G
tr(π(g))tr(φ(g)) =

∑

g∈G

m∑

i=1

πii(g)

n∑

j=1

φjj(g)

=

m∑

i=1

n∑

j=1

∑

g∈G
πii(g)φjj(g) =

m∑

i=1

n∑

j=1

〈πii, φjj〉.
(15.19)

If π 6∼ φ then each inner product vanishes. If π ∼ φ then χπ = χφ and so we may substitute φ = π
in Eq. (15.19), invoke 〈πii, πjj〉 = |G|δij/n and conclude that 〈χπ, χπ〉 = |G|.

Regarding the converse, from Maschke’s Theorem,

π ∼ π(1) ⊕ π(2) ⊕ · · · ⊕ π(s) (15.20)

where each π(j) is irreducible. We note that

χπ =

s∑

i=1

χπ(i) and 〈χπ, χπ〉 =
s∑

i=1

〈χπ(i), χπ(i)〉 =
s∑

i=1

|G|.

Hence if 〈χπ, χπ〉 = |G| then n = s in Eq. (15.20) and so π is irreducible. End of Proof.

If we consider the (V (k), π(k)) to act as basis elements it makes sense to grant them weights when
considering general expansions. More precisely, if (V, π) is a representation then (mV,mπ) denotes
the representation where mV is the direct sum of m copies of V and mπ is the direct sum of m
copies of π.

Proposition 15.8. Let {(V (k), π(k) : 1 ≤ k ≤ s} denote a complete set of representatives of the
equivalence classes of irreducible representations of G. If (V, π) is a representation of G then

π ∼ m1π
(1) ⊕m2π

(2) ⊕ · · · ⊕msπ
(s) where mk = 〈χπ, χπ(k)〉/|G|.

Consequently, the decomposition of π into irreducible components is unique and is determined
up to equivalence by its character.

Proof: We note that

χπ =
s∑

k=1

mkχπ(k) ⇒ 〈χπ, χπ(i)〉 =
s∑

k=1

mk〈χπ(k), χπ(i)〉 = mi|G|.

End of Proof.
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These weights take on familiar values when we expand the right regular representation. We first
compute its character. If {eg}g∈G, where eg(i) = δg,i, is the Euclidian orthonormal basis for C[G]
then

χRG
(h) = tr(RG(h)) =

∑

g∈G
eTgRG(h)eg =

∑

g∈G

∑

i∈G
eg(i)eg(ih) =

∑

g∈G
eg(gh) = |G|δh,I (15.21)

Hence, if
RG ∼ m1π1 ⊕m2π

(2) ⊕ · · · ⊕msπs

then
mi|G| = 〈χRG

, χπ(i)〉 =
∑

g∈G
χRG

(g)χπ(i)(g) = |G|χπ(i)(I) = di|G|.

Now evaluating χRG
at the identity we find

|G| = χRG
(I) =

∑

k=1

dkχπ(k)(I) =

s∑

k=1

d2k. (15.22)

From which it follows that the Q of Eq. (15.16) is an orthonormal basis for C[G].

Proposition 15.9. The irreducible characters of G constitute an orthonormal basis for the class
functions, Class[G].

Proof: We show that the characters span Class[G]. If f ∈ Class[G]) then f ∈ C[G] and as Q forms
an orthonormal basis of C[G] we may develop

f(g) =
∑

i,j,k

c
(k)
i,j π

(k)
i,j (g)

Being a class function brings

f(x)|G| =
∑

g∈G
f(gxg−1) =

∑

g∈G

∑

i,j,k

c
(k)
i,j π

(k)
i,j (gxg

−1) =
∑

i,j,k

c
(k)
i,j

∑

g∈G
π
(k)
i,j (gxg

−1)

=
∑

i,j,k

c
(k)
i,j

[
∑

g∈G
π(k)(g)π(k)(x)π(k)(g−1)

]

i,j

=
∑

i,j,k

c
(k)
i,j

[
∑

g∈G
π(k)(g)

(
∑

r,s

π(k)
r,s (x)Er,s

)
π(k)(g−1)

]

i,j

=
∑

i,j,k

c
(k)
i,j

[
∑

r,s

π(k)
r,s (x)

∑

g∈G
π(k)(g)Er,sπ

(k)(g−1)

]

i,j

=
∑

i,j,k

c
(k)
i,j

∑

r,s

π(k)
r,s (x)

∑

g∈G
π
(k)
i,r (g)π

(k)
j,s (g)

=
∑

i,j,k

c
(k)
i,j

∑

r,s

π(k)
r,s (x)〈π(k)

i,r , π
(k)
j,s 〉

=
∑

i,j,k

c
(k)
i,j

∑

r,s

π(k)
r,s (x)δi,jδr,s|G|/dk = |G|

∑

i,k

c
(k)
i,i

∑

r

π(k)
r,r (x)/dk = |G|

∑

i,k

c
(k)
i,i

dk
χπ(k)(x)
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which lies in the span of the χπ(k). End of Proof.

From here we can finally show that character tables have orthogonal columns.

Proposition 15.10. Let {χj}sj=1 be the irreducible characters of G. If C and C ′ are conjugacy
classes in G with g ∈ C and g′ ∈ C ′ then

s∑

j=1

χj(g)χj(g
′) =

{
|G|/|C| if C = C ′

0 if C 6= C ′.

Proof: The characteristic function of C ′ is a class function and so by the previous proposition we
may write

1C′(g) =

s∑

j=1

〈1C′, χj〉χj(g)

=
s∑

j=1

1

|G|
∑

x∈G
1C′(x)χj(x)χj(g)

=

s∑

j=1

1

|G|
∑

x∈C′

χj(x)χj(g)

=
|C ′|
|G|

s∑

j=1

χj(g)χj(g
′).

As the left hand side is one when g ∈ C′ and zero otherwise we arrive at the claim. End of Proof.

15.3. New Representations from Old

In order to apply such results we require concrete means of constructing representations and
characters. We present here two means for extending known representations of subgroups. This
will permit us to bootstrap from characters of Alt3 to characters of Alt4 and from characters of Alt4
to representations of Alt5.

Lifting: If N is a normal subgroup of G and (V, πG/N ) is a representation of the quotient group
G/N then we define, for each g ∈ G via

πG(g) ≡ πG/N (Ng). (15.23)

To see that it is also a representation

πG(gh) = πG/N(N(gh)) = πG/N (Ng ◦Nh) = πG/N (Ng)πG/N (Nh) = πG(g)πG(h).

On taking the trace of each side of Eq. (15.23) It follows that each character, χG/N , of G/N may
be lifted to a character

χG(g) ≡ χG/N (Ng) (15.24)

of G. Lets use these to lift the characters of Alt3 to Alt4 via the subgroup

V4 ≡ {I, (12)(34), (13)(24), (14)(23)}.
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We argued in Exer. 14.12 that V4 was a normal subgroup of Alt4 and that Alt4/V4 ∼ Alt3. In
particular

Alt4/V4 = {V4I, V4(123), V4(132)} ∼ {I, (123), (132)}.
Hence

χAlt4,j(I) = χAlt4/V4,j(V4I) = χAlt3,j(I)

χAlt4,j((123)) = χAlt4/V4,j(V4(123)) = χAlt3,j((123))

χAlt4,j((132)) = χAlt4/V4,j(V4(132)) = χAlt3,j((132))

χAlt4,j((12)(34)) = χAlt4/V4,j(V4(12)(34)) = χAlt4/V4,j(V4I) = χAlt3,j(I)

.

and we so arrive, on recalling the Character Table 15.1 of Alt3, at the first three rows of Table 15.3.
Regarding the fourth character, from the sum formula Eq. (15.22) we deduce that χAlt4,4(I) = 3.
The rest follows by orthogonality

Alt4 I (12)(34) (123) (132)
χ1 1 1 1 1
χ2 1 1 ω3 ω2

3

χ3 1 1 ω2
3 ω3

χ4 3 −1 0 0

Table 15.3. The character table for Alt4. ω3 = exp(2πi/3)

Induction: If (V, π) is a representation for H and H is a subgroup G it is natural to attempt to
induce from (V, π) a representation of G. We begin with the simple extension by zero,

π0(g) ≡
{
π(g) if g ∈ H

0 otherwise,

and establish

Proposition 15.11. Suppose that (Cd, π) is a representation for H , a subgroup of G, and that
{t1, t2, . . . , tm} is a complete set of representatives of left cosets of H . Then (Cdm, IndGHπ), where

(IndGHπ(g))i,j ≡ π0(t−1
i gtj) (15.25)

is a representation of G.

Proof: To show that IndGHπ respects multiplication we take g and h in G and compute

(IndGHπ(g)Ind
G
Hπ(h))i,j =

m∑

k=1

(IndGHπ(g))i,k(Ind
G
Hπ(h))k,j

=
m∑

k=1

π0(t−1
i gtk)π

0(t−1
k htj)

(15.26)

For (IndGHπ(h))k,j to contribute to the sum requires that t−1
k htj ∈ H or, equivalently, tkH = htjH .

If tr is the coset representative of htjH then Eq. (15.26) takes the form

(IndGHπ(g)Ind
G
Hπ(h))i,j = π0(t−1

i gtr)π(t
−1
r htj). (15.27)
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Similarly, for the t−1
i gtr term to contribute we require that tiH = gtrH . Now as trH = htjH from

above it follows that tiH = ghtrH and so t−1
i ghtr ∈ H and Eq. (15.27) becomes

(IndGHπ(g)Ind
G
Hπ(h))i,j = π(t−1

i gtr)π(t
−1
r htj)

= π(t−1
i gtrt

−1
r htj) = π(t−1

i ghtj) = (IndGHπ(gh))i,j,

and so IndGHπ is a representation. End of Proof.

We put this to immediate use by inducing the degree 5 representation of Alt5

Ψ3 ≡ IndAlt5
Alt4

χ3

from the degree one representation, χ3, of Alt4. Recalling Eq. (15.25) we must compute

(Ψ3(g))i,j = χ0
3(t

−1
i gtj) (15.28)

where the ti are a complete set of representatives of the 5 cosets of Alt4. Following Exer. 14.17 we
select

t1 = I, t2 = (125), t3 = (152), t4 = (345), t5 = (354).

Now we compute the next hundred permutations, t−1
i gtj, in induce.m

Ψ3(123) = χ0
3













(123) (13)(25) (153) (12345) (12354)
(235) (135) (12)(35) (234) (23)(45)

(15)(23) (132) (253) (15234) (15423)
(12543) (15243) (143) (125) (12534)
(12453) (14523) (13)(45) (12435) (124)













=













ω3 0 0 0 0
0 0 0 ω2

3 0
0 ω2

3 0 0 0
0 0 ω2

3 0 0
0 0 0 0 ω2

3













Ψ3((12)(34)) = χ0
3













(12)(34) (25)(34) (15)(34) (12)(45) (12)(35)
(25)(34) (15)(34) (12)(34) (254) (253)
(15)(34) (12)(34) (25)(34) (154) (153)
(12)(45) (245) (145) (12)(35) (12)(34)
(12)(35) (235) (135) (12)(34) (12)(45)













=













1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0













Ψ3((12345)) = χ0
3













(12345) (13452) (345) (12354) (123)
(234) (13425) (15342) (23)(45) (235)

(15234) (134) (12534) (15423) (15)(23)
(125) (152) () (12534) (12543)

(12435) (14352) (354) (124) (12453)













=













0 0 0 0 ω3

ω2
3 0 0 0 0
0 ω3 0 0 0
0 0 1 0 0
0 0 0 ω2

3 0













and

Ψ3((13452)) = χ0
3













(13452) (345) (12345) (13542) (132)
(13425) (15342) (234) (13254) (13)(25)
(134) (12534) (15234) (13)(45) (135)
(152) () (125) (15342) (15432)

(14352) (354) (12435) (142) (14532)













=













0 0 0 0 ω2
3

0 0 ω2
3 0 0

ω3 0 0 0 0
0 1 0 0 0
0 0 0 ω3 0













.

Regarding the reducibilty of Ψ3 we evaluate its character, ψ3 ≡ trΨ3, finding

ψ3(I) = 5, ψ3((123)) = −1, ψ3((12)(34)) = 1, ψ3((12345)) = ψ3((13452)) = 0

from which we arrive at

〈ψ3, ψ3〉 =
∑

g∈Alt5

ψ3(g)ψ3(g) = 25|Conj()(Alt5)|+ |Conj(123)(Alt5)|+ |Conj(12)(34)(Alt5)|

= 25 + 20 + 15 = 60 = |Alt5|.
It follows from Prop. 15.7 that Ψ3 is indeed irreducible.
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15.4. The Electronic Structure of the Buckyball

The Buckyball is comprised of 60 carbon atoms bound to their three nearest neighbors, via over-
lapping atomic orbitals, along the pentagonal (blue) and hexagonal (red) edges of Figure 14.6(B).
The hexagonal edges are typically a bit shorter and so may indicate double bonds. Our interest
here is in demonstrating how representation theory may be used to ascertain the electronic struc-
ture of this large symmetric molecule. The electronic structure is used to gauge the stability and
reactivity of the molecule and corresponds to determining the energy levels, and distribution, of the
60 π–electrons in the ground state.

We follow the Molecular Orbital Theory of Hückel outlined in §12.5. Namely, we build a putative
molecular orbital from 60 atomic orbitals

ψ̃ =

60∑

i=1

ciφi

and deduce from Rayleigh’s Principle, for the Schrödinger operator H, that

E1 ≤
〈Hψ̃, ψ̃〉
〈ψ̃, ψ̃〉

for each c. Proceeding exactly as in §12.5 we find

〈ψ̃, ψ̃〉 =
60∑

i=1

c2i = cT c and 〈Hψ̃, ψ̃〉 = cT (αI + βA(t))c

where A(t) is the weighted adjacency matrix of the bucky ball. In particular, it is 60-by-60 and it
is 1 (or t) in row i column j if atom i is adjacent to atom j via a pentagonal (or hexagonal) edge.
Hence, the ground state of the Buckyball may be approximated by solving

Ẽ1 = min
c∈R60

cT (αI + βA(t))c

cT c
. (15.29)

It follows that Ẽ1 = α + βλ1(t) where λ1(t) is the largest eigenvalue of A(t). Remarkably, we
will now calculate, by hand, the 60 eigenvalues of A(t) without ever constructing A(t) itself. This
calculation will take some time and will generate ideas and results with applicability well beyond
the Buckyball. So however as to to not lose sight of this application we have plotted its (to be
computed) eigenvalues in Figure 15.1(A) as t varies from 0 to 3. With these eigenvalues we may
follow the conventions of HMO and assign the 60 π–electrons in pairs, of opposite spin, to the 30
lowest energy levels. As E = α+ λ(t)β, and β is negative, these levels correspond to the 30 largest
eigenvalues of A(t). We depict these energy levels, in Figure 15.1(B), with horizontal bars crossed
by arrows of opposite orientation (spin), for the case the bond ratio t = 1.
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Figure 15.1 Electronic structure of C60. (A) The eigenvalues of A(t). Each color corresponds to
a particular irreducible representation, Ψj, of Alt5. The degree of the representation coincides with
the multiplicity of the eigenvalue. Black corresponds to Ψ1 and has degree 1, blue to Ψ2 of degree
4, red to Ψ3 of degree 5, green to Ψ4 of degree 3 and magenta to Ψ5 also of degree 3. (B) Hückel
energy levels at t = 1.

The explicit calculation of the eigenvalues of the adjacency matrix of the Buckyball hinges on
five remarkable results.

1. The Buckyball is the Cayley graph of SIco, the symmetry group of the icosahedron, with
respect to the set S = {RA, R

−1
A , RC}. The elements RA and RC are defined in Figure 14.5 as

rotations about 5–fold and 2–fold axes of the icosahedron.

2. SIco is isomorphic to Alt5, the group of alternating permutations on R5 – and hence

Cay(SIco, {RA, R
−1
A , RC}) = Cay(Alt5, {(12345), (15432), (12)(34)}).

3. The adjacency matrix of a Cayley graph can be expressed via the right regular representation

A(t) = RAlt5((12345)) +RAlt5((15432)) + tRAlt5((12)(34)) .

4. The right regular representation is similar to the direct sum of irreducible representations

RAlt5 ∼ Ψ1 ⊕ 4Ψ2 ⊕ 5Ψ3 ⊕ 3Ψ4 ⊕ 3Ψ5

of Alt5.

5. It follows that the eigenvalues of A(t) are the eigenvalues of

Aj(t) = Ψj((12345)) + Ψj((15432)) + tΨj((12)(34)) (15.30)

for j = 1, . . . , 5. The biggest of these matrices is 5-by-5, and in that case its characteristic
polynomial factors naturally into a cubic and a quadratic.

It remains only to compute the reduced adjacency matrices of (15.30). We begin by first building
character tables for Per4, Per5 and Alt5.
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Irreducible Characters of Per4. As always we assign χ1(P ) = 1 for each P ∈ Per4, and χ2(P ) to
be the sign character, Eq. (15.3). Recalling the conjugacy classes of Per4, Table 14.4, we have built
the first two rows of Table 15.4. Regarding the remaining three characters we next observe that

χt(P ) = trP

defines a character on Per4 (in fact on every Pern). On evaluation of χt on the conjugacy classes of
Per4, recall Table 14.4, we find

χt(I) = 4, χt((12)) = 2, χt((123)) = 1 and χt((12)(34)) = χt((1234)) = 0.

Although χt is not irreducible we note that

χ3 ≡ χt − χ1

obeys 〈χ3, χ3〉 = 24 = |Per4| and so is irreducible by Prop. 15.7.
Next we note that

χ4(P ) ≡ χ2(P )χ3(P )

is a distinct character for which 〈χ4, χ4〉 = 24. We get the degree of the fifth and final irreducible
character by Eq. (15.22),

1 + 1 + 32 + 32 + d25 = |Per4| = 24,

so d5 = χ5(I) = 2. The remaining elements of the fifth row of Table 15.4 then follow by orthogonality
with column one.

Per4 I (12) (123) (12)(34) (1234)
χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 3 1 0 −1 −1
χ4 3 −1 0 −1 1
χ5 2 0 −1 2 0

Table 15.4. The character table for Per4.

Irreducible Characters of Per5. The first 4 characters of Per4 also work for Per5 giving the first
4 rows of Table 15.5. For the remainder we construct the pair

χ3±(P ) ≡ (χ2
3(P )± χ3(P

2))/2.

and find
χ3±(I) = (χ2

3(I)± χ3(I))/2 = (16± 4)/2,

χ3±((12)) = (χ2
3((12))± χ3(I))/2 = (4± 4)/2,

χ3±((123)) = (χ2
3((123))± χ3((132)))/2 = (1± 1)/2,

χ3±((12)(34)) = (χ2
3((12)(34))± χ3(I))/2 = (0± 4)/2,

χ3±((1234)) = (χ2
3((1234))± χ3((13)(24))/2 = (0± 0)/2,

χ3±((123)(45)) = (χ2
3((123)(45))± χ3((132))/2 = (1± 1)/2,

χ3±((12345)) = (χ2
3((12345))± χ3((13524))/2 = (1∓ 1)/2.

We check that

〈χ3−, χ3−〉 = 36 + 4|Conj(12)(34)(Per5)|+ |Conj(12345)(Per5)| = 36 + 4 · 15 + 24 = 120 = |Per5|
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and so find χ3− irreducible, and so call it χ5. Although χ3+ is not irreducible, we find, on computing
〈χ3+, χ1〉 and 〈χ3+, χ3〉 that

χ6 ≡ χ3+ − χ1 − χ3

is a new irreducible character. The final character can then be constructed as in Per4 with the sum
of squares formula Eq. (15.22) and column orthogonality.

Per5 I (12) (123) (12)(34) (1234) (123)(45) (12345)
χ1 1 1 1 1 1 1 1
χ2 1 −1 1 1 −1 −1 1
χ3 4 2 1 0 0 −1 −1
χ4 4 −2 1 0 0 1 −1
χ5 6 0 0 −2 0 0 1
χ6 5 1 −1 1 −1 1 0
χ7 5 −1 −1 1 1 −1 0

Table 15.5. The character table for Per5.

Irreducible Characters of Alt5. We note that the restriction of Per5 characters 1, 3 and 6 are
irreducible characters of Alt5, and denote these ψ1, ψ2 and ψ3. For our next character, ψ4, we use
the trace of the isomorphism with SIco established in (14.31). Noting that trRa,θ = 2 cos(θ) + 1 we
find

ψ4((123)) = 2 cos(4π/3) + 1 = 0, ψ4((12)(34))) = 2 cos(π) + 1 = −1,

and

ψ4((12345)) = 2 cos(2π/5) + 1 = (1 +
√
5)/2, ψ4((123)) = 2 cos(6π/5) + 1 = (1−

√
5)/2,

The table is then completed with the sum of squares formula Eq. (15.22) and column orthogonality.

Alt5 I (123) (12)(34) (12345) (13452)
ψ1 1 1 1 1 1
ψ2 4 1 0 −1 −1
ψ3 5 −1 1 0 0
ψ4 3 0 −1 α 1− α
ψ5 3 0 −1 1− α α

Table 15.6. The character table for Alt5, α = (1 +
√
5)/2.

We can now embark on the final step, the construction of the

Irreducible Representations of Alt5.

The first irreducible is simply the constant representation, Ψ1 = 1. It follows that the associated
reduced adjacency matrix (recall (15.30)), is A1(t) = 2+ t and hence the eigenvalue of A1(t) is 2+ t.
This is the black curve in Figure 15.1.

For Ψ2 we begin with the representation (C5,Ψ(σ) = Pσ) and note that trΨ = ψ1+ψ2. It follows
that Ψ is not irreducible, and at the same time suggests, on recalling Prop. 15.1, that C5 = W⊕W⊥

and Ψ ∼ Ψ1 ⊕ Ψ2 where W = span{(1, 1, 1, 1, 1)T} is the eigenspace of Ψ with eigenvalue 1. As
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1 = Ψ1(σ) we may reveal Ψ2 by assembling a similarity transformation composed of basis vectors
of W and W⊥. In particular

X =




1 1 0 0 0
1 −1 1 0 0
1 0 −1 1 0
1 0 0 −1 1
1 0 0 0 −1


 yields X−1Ψ(σ)X =

(
1 0
0 Ψ2(σ)

)
.

As σ runs over the representatives of the conjugacy classes of Alt5 we find

Ψ2(()) =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, Ψ2((123)) =









0 −1 1 0
1 −1 1 0
0 0 1 0
0 0 0 1









, Ψ2((12)(34)) =









−1 1 0 0
0 1 0 0
0 1 −1 1
0 0 0 1









,

Ψ2((12345)) =









0 0 0 −1
1 0 0 −1
0 1 0 −1
0 0 1 −1









, Ψ2((13452)) =









−1 1 0 0
−1 1 0 −1
0 1 0 −1
0 0 1 −1









.

As its character indeed jibes with the ψ2 of Tab. 15.6 we may conclude that Ψ2 is irreducible.
Its associated reduced adjacency matrix (recall (15.30)) is

A2(t) = Ψ2((12345)) + (Ψ2((12345)))
−1 + tΨ2((12)(34)) =




−1− t 1 + t 0 −1
0 t 1 −1
−1 1 + t −t t
−1 0 1 −1 + t


.

Now poly and simple reveal the characteristic polynomial

det(λI −A2(t)) = (λ2 + λ− 1− t2)(λ2 + λ− (t + 1)2). (15.31)

Its roots give the blue eigen–curves in Figure 15.1.

We constructed the third irreducible, Ψ3, via induction in the previous section. You may wish
to confirm that its character indeed coincides with the ψ3 of Tab. 15.6. The associated reduced
adjacency matrix is

A3(t) = Ψ3((12345)) + (Ψ3((12345)))
−1 + tΨ3((12)(34)) =




t ω3 0 0 ω3

ω2
3 0 ω2

3 + t 0 0
0 ω3 + t 0 1 0
0 0 1 0 ω3 + t
ω2
3 0 0 ω2

3 + t 0




and poly and simple reveal the characteristic polynomial

det(λI − A3(t)) = (λ2 + λ− 1 + t− t2)(λ3 − (1 + t)λ2 − (3− 2t+ t2)λ+ t3 − t2 + t+ 2).

Its roots are the red eigen–curves of Figure 15.1.

Regarding Ψ4 we recall that ψ4 was constructed from the isomorphism Alt5 ∼ SIco. We note
that (12345) corresponds to the five-fold rotation

Ψ4((12345)) = RA =




cos(2π/5) sin(2π/5) 0
− sin(2π/5) cos(2π/5) 0

0 0 1


 =

1

2




α− 1
√
α + 2 0

−
√
α + 2 α− 1 0
0 0 2



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where α = (1 +
√
5)/2 as in Tab. 15.6. Regarding (12)(34), as we are leaving frame 5 invariant

this can only be an order-2 rotation about an axis in frame 5. In fact rotation of π through the
midpoint of edge 4 : 8 does the job

Ψ4((12)(34)) = Rm(4:8),π.

We express the midpoint as m(4 : 8) = (α,−
√
3− α,−2α)/(2

√
α + 2) and so find

Rm(4:8),π =
1

2
√
5




α −
√
3− α −2α

−
√
3− α (3− α)/α 2

√
3− α

−2α 2
√
3− α 4α


− I.

All together this yields the reduced adjacency matrix

A4(t) = RA +RT
A + tRm(4:8),π

=



α− 1 0 0
0 α− 1 0
0 0 2


+

t

2
√
5



α− 2

√
5 −

√
3− α −2α

−
√
3− α −((α− 3)/α+ 2

√
5) 2

√
3− α

−2α 2
√
3− α 2(α−

√
5)




and characteristic polynomial

det(λI −A4(t)) = (t+ λ− α + 1)(αt2 + t− αλ2 + α(1 + α)λ− 2).

Its roots are the green eigen–curves of Figure 15.1.

Finally, with reference to Tab. 15.6, we note that ψ5 may be obtained from ψ4 by interchanging
the last two conjugacy classes. As these two classes differ (recall Prop. 14.15) only by conjugation
with (12) its seems natural to inspect Ψ5(σ) ≡ Ψ4((12)σ(12)). In this way

Ψ5((12)(34)) = Ψ4((12)(12)(34)(12)) = Ψ4((12)(34)) = Rm(4:8),π

while
Ψ5(12345) = Ψ4((12)(12345)(12)) = Ψ4((13542))

delivers a new matrix. We recognize (13452) to be rotation by 6π/5 through vertices 12 and 9,

Ψ4((13452)) = Rv12:9,6π/5 where v12:9 = (−1/α,−
√
4α+ 3/α,−1)/

√
5.

The associated reduced adjacency matrix is therefore

A5(t) = Rv12:9,6π/5 +RT
v12:9,6π/5

+ tRm(4:8),π

=
1

5

( √
5/α− 5α

√
20α+ 15/α

√
5√

20α+ 15/α 5
√
20α+ 15√

5
√
20α+ 15 −2

√
5

)
+

t

2
√
5

(
α− 2

√
5 −

√
3− α −2α

−
√
3− α −((α− 3)/α+ 2

√
5) 2

√
3− α

−2α 2
√
3− α 2(α−

√
5)

)

with characteristic polynomial

det(λI − A5(t)) = λ3 + λ2(t +
√
5− 1) + λ((

√
5− 1)t− t2 − α−

√
5)− t3 − (α− 1)t−

√
5− 3.

Its roots are the magenta eigen–curves of Figure 15.1. This completes our explicit expression of
the reduced characteristic polynomials of the buckyball via the explicit expression of each of the
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irreducicle representations of Alt5. We will develop a more subtle approach in the exercises that
discerns the same results from the mere character table.

15.5. Block Diagonalization of Symmetric Structures

We now move from eigenvalues of the adjacency matrix of a network to eigenvalues of the stiffness
matrix, S, of the associated mechanical network. We suppose that the network has ν nodes and that
each node has n degrees of freedom. If the undeformed network has a symmetry group, G ⊂ On,
then we define the stiffness representation, σ : G → GLνn, by asking σ(g) to transform the
vector displacements in accordance with the nodes transformed by g. It will then follow that the
similarity transformation that expresses the stiffness representation as a direct sum of irreducible
representations of G also serves to block diagonalize the associated stiffness matrix. To fix ideas,
we consider the equilateral triangle in Figure 15.2(A).

The equilateral triangle has ν = 3 nodes each with n = 2 degrees of freedom and so a displacement
vector x ∈ R6. We recall the stiffness matrix studied in Exer. 12.2,

S = ATA =
1

4




5
√
3 −4 0 −1 −

√
3√

3 3 0 0 −
√
3 −3

−4 0 5 −
√
3 −1

√
3

0 0 −
√
3 3

√
3 −3

−1 −
√
3 −1

√
3 2 0

−
√
3 −3

√
3 −3 0 6


 . (15.32)

The symmetry group of the equilateral triangle is Dih3 and we understand that it maps vertices
to vertices. Our first task is to construct the stiffness representation, σ, that associates with each
g ∈ Dih3 a mapping of planar vectors at vertices to planar vectors at vertices.

1 2

3
(B)

1 2

3
(C)

1

23

x
1

x
2

x
3

x
4

x
5

x
6

(A)

Figure 15.2. (A) An equilateral triangle with labeled edges and degrees of freedom. (B) Nodal
displacement vectors. (C) The transformation of the vectors in (B) by σ(R2π/3).

To begin, note that rotation by 2π/3 permutes the vertices, (1, 2, 3) to (2, 3, 1) and so the associ-
ated displacements, (x1, x2, x3, x4, x5, x6), to (x3, x4, x5, x6, x1, x2). We can encode this permutation
in the 6-by-6 matrix

P2π/3 =



0 0 I
I 0 0
0 I 0




of 2-by-2 blocks. The desired transformation is then to rotate each vector about its vertex and then
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to rotate the whole frame about the centroid of the triangle. This is accomplished by

σ(R2π/3) = P2π/3



R2π/3 0 0
0 R2π/3 0
0 0 R2π/3


 =




0 0 R2π/3

R2π/3 0 0
0 R2π/3 0


 (15.33)

and illustrated in Figure 15.2(B–C). We next transform the other generator of Dih3. Note that the
reflection Hv3 built in (14.4) exchanges vertices 1 and 2 and so permutes the displacement vector
(x1, x2, x3, x4, x5, x6) to (x3, x4, x1, x2, x5, x6). We encode this in the permutation matrix

Pv3 =



0 I 0
I 0 0
0 0 I




of 2-by-2 blocks and proceed to represent

σ(Hv3) = Pv3



Hv3 0 0
0 Hv3 0
0 0 Hv3


 =




0 Hv3 0
Hv3 0 0
0 0 Hv3


 . (15.34)

We extend σ to the remaining elements of Dih3 by respecting the multiplication of Table 14.1. For
example,

σ(R4π/3) = σ(R2π/3R2π/3) = σ(R2π/3)σ(R2π/3).

The central result is that the stiffness representation commutes with the stiffness matrix.

Proposition 15.12. If the mechanical network has a symmetry group G then its mass and
stiffness matrices commute with its stiffness representation. That is,

σ(g)M =Mσ(g) and σ(g)S = Sσ(g) ∀ g ∈ G. (15.35)

Proof: To see this we return to the network’s instantaneous energy, (12.35),

E(u(t), u′(t)) = u′(t)TMu′(t) + u(t)TSu(t)

associated with displacement u(t) and velocity u′(t). As each σ(g) merely relabels the network’s
displacements and velocities it does not effect the energy. That is

E(σ(g)u(t), σ(g)u′(t)) = E(u(t), u′(t)) ∀g ∈ G and u(t), u′(t). (15.36)

It follows that uTσ(g)TMσ(g)u = uTMu and vTσ(g)TSσ(g)v = vTSv for all u and v in Rnν . From
here we may infer from Exer.12.6 that that σ(g)TMσ(g) = M and σ(g)TKσ(g) = K. As each
σ(g) ∈ Onν we then arrive at Mσ(g) = σ(g)M and Sσ(g) = σ(g)S. End of Proof.

The next step is to transform σ into a direct sum of irreducibles of Per3. We begin by noting
that its character is simply

tr(σ(g)) = 6δg,I .

On recalling our work in (15.21) it follows that σ is similar to RPer3 and hence

σ ∼ π(1) ⊕ π(2) ⊕ 2π(3). (15.37)
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To begin we define the family of matrices

P
(j)
i ≡ dj

|G|
∑

g∈G
π
(j)
i,i (g)σ(g) i = 1, . . . , dj, j = 1, . . . , s (15.38)

and establish

Proposition 15.13. Each P
(j)
i is symmetric and

P
(j)
i P

(j′)
i′ = δj,j′δi,i′P

(j)
i , dimR(P

(j)
i ) = mj and

s∑

j=1

dj∑

i=1

P
(j)
i = Inν (15.39)

and S commutes with each P
(j)
i and each R(P

(j)
i ) is an invariant subspace of S.

Proof: We first establish symmetry

(P
(j)
i )T ≡ dj

|G|
∑

g∈G
π
(j)
i,i (g)σ

T (g)

but σT (g) = σ−1(g) = σ(g−1) = σ(gT ) and π(j)(gT ) = (π(j)(g))T so π
(j)
i,i (g

T ) = π
(j)
i,i (g) and hence

(P
(j)
i )T ≡ dj

|G|
∑

g∈G
π
(j)
i,i (g)σ

T (g) =
dj
|G|

∑

g∈G
π
(j)
i,i (g

T )σ(gT ) = P
(j)
i .

To establish (15.39) we express the stiffness representation in terms of the irreducibles of G,

σ(g) = X

s⊕

k=1

mkπ
(k)(g)XT

and invoke the Grand Orthogonality Theorem to deduce

P
(j)
i =

dj
|G|

∑

g∈G
π
(j)
i,i (g)σ(g)

=
dj
|G|X

∑

g∈G
π
(j)
i,i (g)

s⊕

k=1

mkπ
(k)(g)XT

= Xdiag(0, . . . , 0, eie
T
i , . . . , eie

T
i , 0, . . . , 0)X

T

(15.40)

where ei ∈ Rdj and ei(j) = δi,j and there are mj copies of eie
T
i . It follows that

P
(j)
i P

(j)
i′ = Xdiag(0, . . . , 0, eie

T
i ei′e

T
i′ , . . . , eie

T
i ei′e

T
i′ , 0, . . . , 0)X

T = δi,i′P
(j)
i .

As P
(j)
i is a projection it follows that its rank is its trace. Its trace, mj , follows directly from (15.40).

The orthogonality in j also follows directly from (15.40) for the mj copies of eie
T
i share no common

slots with the mj′ copies of ei′e
T
i′ . On summing over i and j in (15.40) we find

s∑

j=1

dj∑

i=1

P
(j)
i = Xdiag(Id1 , . . . , Id1 , Id2, . . . , Id2 , . . . , Ids, . . . , Ids)X

T = XIXT = Inν .
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Finally, SP
(j)
i = P

(j)
i S follows from Prop. 15.12 and the definition, (15.38). As P

(j)
i is a projection

it follows that if v ∈ R(P
(j)
i ) then P

(j)
i v = v and so

Sv = SP
(j)
i v = P

(j)
i Sv,

which in turn implies that Sv ∈ R(P
(j)
i ). This proves that R(P

(j)
i ) is an invariant subspace of S.

End of Proof.

This proposition guarantees that if we assemble the matrix

V = [V
(1)
1 · · ·V (1)

d1
V

(2)
1 · · ·V (2)

d2
· · · · · · V (s)

1 · · ·V (s)
ds

] (15.41)

where V
(j)
i is an orthonormal basis for R(P

(j)
i ) then V TV = I and V TSV will be block diagonal.

We illustrate this first on the equilateral triangle and then on the methane molecule.
The stiffness representation of the equilateral triangle is similar to

π1 ⊕ π(2) ⊕ 2π(3)

where the π(j) are the irreducible representations of Per3 established in (15.2)–(15.4). With these
we construct the two rank 1 projections

P
(1)
1 =

1

6

∑

g∈Per3

π(1)(g)σ(g) =
1

6

∑

g∈Per3

σ(g)

=
1

6



I 0 0
0 I 0
0 0 I


+

1

6




0 0 R2π/3

R2π/3 0 0
0 R2π/3 0


+

1

6




0 R4π/3 0
0 0 R4π/3

R4π/3 0 0




+
1

6




0 Hv3 0
Hv3 0 0
0 0 Hv3


 +

1

6




0 0 Hv2

0 Hv2 0
Hv2 0 0


+

1

6



Hv1 0 0
0 0 Hv1

0 Hv1 0




=
1

12




3
√
3 −3

√
3 0 −2

√
3√

3 1 −
√
3 1 0 −2

−3 −
√
3 3 −

√
3 0 2

√
3√

3 1 −
√
3 1 0 −2

0 0 0 0 0 0

−2
√
3 −2 2

√
3 −2 0 4




and

P
(2)
1 =

1

6

∑

g∈Per3

π(2)(g)σ(g) =
1

12




1 −
√
3 1

√
3 −2 0

−
√
3 3 −

√
3 −3 2

√
3 0

1 −
√
3 1

√
3 −2 0√

3 −3
√
3 3 −2

√
3 0

−2 2
√
3 −2 −2

√
3 4 0

0 0 0 0 0 0




and the two rank two projections

P
(3)
1 =

2

6

∑

g∈Per3

π
(3)
1,1(g)σ(g) =

2

6

∑

g∈Dih3

g1,1σ(g) =
1

12




5
√
3 5 −

√
3 2 0√

3 3
√
3 −3 −2

√
3 0

5
√
3 5 −

√
3 2 0

−
√
3 −3 −

√
3 3 2

√
3 0

2 −2
√
3 2 2

√
3 8 0

0 0 0 0 0 0



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and

P
(3)
2 =

2

6

∑

g∈Per3

π
(3)
2,2(g)σ(g) =

2

6

∑

g∈Dih3

g2,2σ(g) =
1

12




3 −
√
3 −3 −

√
3 0 2

√
3

−
√
3 5

√
3 5 0 2

−3
√
3 3

√
3 0 −2

√
3

−
√
3 5

√
3 5 0 2

0 0 0 0 0 0

2
√
3 2 −2

√
3 2 0 8


.

From these we build the block diagonalizer, V , of (15.41). The first two projections are rank 1 and
so the first two columns of V are determined up to sign. We take

V
(1)
1 =

1

2
√
3

(√
3 1 −

√
3 1 0 −2

)T
and V

(2)
1 =

1

2
√
3

(
1 −

√
3 1

√
3 −2 0

)T
.

The next two projections are rank 2 and so there is a wide choice of bases. On letting Matlab

choose, via orth as in triblock.m, we arrive at

V
(3)
1 =

1√
15

(
−5/2 −

√
3/2 −5/2

√
3/2 −1 0

0 −
√
3 0

√
3 3 0

)T

V
(3)
2 =

1√
3

(
−
√
3/2 1/2

√
3/2 1/2 0 −1

0 −1 0 −1 0 −1

)T (15.42)

and arrive at the block diagonalization

V TSV =




3
0

0.3 0.6
0.6 1.2

1.5 0
0 0


 (15.43)

of the stiffness matrix. As the characteristic polynomial of the 2-by-2 block is λ(λ− 3/2) it follows
that the eigenvalues of S are 3, with multiplicity 1,3/2 with multiplicity 2, and 0 with multiplicity
3.

Regarding eigenvectors, it follows from (15.43) that V
(1)
1 is an eigenvector associated with the

eigenvalue 3 (that we recognize as the pure stretch mode depicted in Figure 12.4(A)), while the V
(2)
1

is an eigenvector associated with eigenvalue 0, that we recognize as a pure rotation. By the same

reasoning, the first column of V
(3)
2 is an eigenvector associated to eigenvalue 3/2 (that we recognize

as one of the scissor modes depicted in Figure 12.4(B–C)), while the second column of V
(3)
2 is an

eigenvector associated to eigenvalue 0, that we recognize as vertical translation.
simply normalized versions of the first columns of their respective projections. The first of

these, associated with eigenvalue 3, is the The first column of V
(3)
1 comes from normalization of√

3(P
(3)
1 ):,1 − (P

(3)
1 ):,2. It is associated with eigenvalue 0 and corresponds to horizontal translation.

The second column, determined (up to sign) by orthogonality, is associated with eigenvalue 3/2 and
correspods to one of the scissor modes depicted in Figure 12.4(B–C). Similarly, The first column of

V
(3)
2 is the normalization of (P

(3)
2 ):,1+

√
3(P

(3)
2 ):,2. It is associated with eigenvalue 0 and corresponds

to vertical translation. The second column, determined (up to sign) by orthogonality, is associated
with eigenvalue 3/2 and correspods to the other scissor mode of Figure 12.4(B–C).

We next consider vibration of the methane molecule of Figure 3.11. Its geometric incidence
matrix, A, derived in (3.35) using the 15 degrees of freedom illustrated in Figure 15.3, yields the
15-by-15 stiffness matrix S = ATA.
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Figure 15.3 A re-illustration of the tetrahedron in Figure 3.11.

The molecule has the symmetry of the tetrahedron and as Tet ∼ Per4 the associated stiffness
representation, σ, takes Per4 to GL15. We define σ on the generators (first column is central carbon,
subsequent columns are hydrogens at vertices v1, v2, v3 and v4 in Figure 14.3)

σ(Rv4,2π/3) =













Rv4,2π/3 0 0 0 0
0 0 0 Rv4,2π/3 0
0 Rv4,2π/3 0 0 0
0 0 Rv4,2π/3 0 0
0 0 0 0 Rv4,2π/3













σ(Re1,π) =













Re1,π 0 0 0 0
0 0 0 Re1,π 0
0 0 0 0 Re1,π

0 Re1,π 0 0 0
0 0 Re1,π 0 0













σ(H3,4) =













H3,4 0 0 0 0
0 0 H3,4 0 0
0 H3,4 0 0 0
0 0 0 H3,4 0
0 0 0 0 H3,4













where H3,4 =





0 1 0
1 0 0
0 0 1





is reflection across the plane that contains both the origin and the line through vertices v3 and v4.
It simply swaps vertices v1 and v2.

The next step is the decomposition of σ into the irreducible representations of Per4,

σ = m1π
(1) ⊕m2π

(2) ⊕m3π
(3) ⊕m4π

(4) ⊕m5π
(5) where mk = 〈χσ, χk〉/|Per4|.

We proceed then to compute the character of σ at reprentatives of the five cojugacy classes of Per4.
The first, χσ(I) = 15 is easy.

Regarding the character table Tab. 15.4, the permutation (12) correponds to our reflection H3,4

and so χσ((12)) = 3tr(H3,4) = 3.
Next (123) corresponds to a three-fold rotation and so χσ(123) = 2tr(Rd,2π/3) = 0.
Next (12)(34) corresponds to a two-fold rotation and so χσ((12)(34)) = tr(Re1,π) = −1.
Finally (1234) corresponds to the product of a two-fold rotation and a reflection and so χσ((1234)) =

tr(σ(H3,4)σ(Re1,π)) = tr(H3,4Re1,π) = −1.
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With these we may now evaluate the multiplicities

m1 = 〈χσ, χ1〉/24 = (1 · 1 · 15 + 6 · 1 · 3 + 8 · 1 · 0 + 3 · 1 · −1 + 6 · 1 · −1)/24 = 1

m2 = 〈χσ, χ2〉/24 = (1 · 1 · 15 + 6 · −1 · 3 + 8 · 1 · 0 + 3 · 1 · −1 + 6 · −1 · −1)/24 = 0

m3 = 〈χσ, χ3〉/24 = (1 · 3 · 15 + 6 · 1 · 3 + 8 · 0 · 0 + 3 · −1 · −1 + 6 · −1 · −1)/24 = 3

m4 = 〈χσ, χ4〉/24 = (1 · 3 · 15 + 6 · −1 · 3 + 8 · 0 · 0 + 3 · −1 · −1 + 6 · 1 · −1)/24 = 1

m5 = 〈χσ, χ5〉/24 = (1 · 2 · 15 + 6 · 0 · 3 + 8 · −1 · 0 + 3 · 2 · −1 + 6 · 0 · −1)/24 = 1

and hence
σ = π1 ⊕ 3π3 ⊕ π4 ⊕ π5.

Next we build the projections

P (j) ≡ dj
24

∑

g∈Per4

χj(g)σ(g) and V (j) = orth(R(P (j))).

When j = 3 we subdivide

P
(3)
i ≡ 1

8

∑

g∈Tet
π
(3)
i,i (g)σ(g) =

1

8

∑

g∈Tet
gi,iσ(g). and V

(3)
i = orth(R(P

(3)
i )).

and construct
V = [V (1) V

(3)
1 V

(3)
2 V

(3)
3 V (4) V (5)]

and find

V TSV =




1
S1

S1

S2

05




where

S1 =
1

3

(
2 −2

√
2 −

√
2

−2
√
2 4 2

−
√
2 2 1

)
, and S2 =

1

3

(
4 2

√
2 2

2
√
2 2

√
2

2
√
2 1

)
.

Each of these Si have easy identical spectra, (0, 0, 4/3).

15.6. Fourier Analysis on Abelian Groups

If G = {g1, g2, . . . , gn} is abelian then every element is its own conjugacy class and so there are n

irreducible characters, Ĝ ≡ {χ1, χ2, . . . , χn}. It follows from our work above that Class[G] = C[G]

and so the elements of Ĝ constitute an orthogonal basis for C[G]. Hence, if u ∈ C[G] then we may
express

u(gi) =

n∑

j=1

ujχj(gi) (15.44)

where, on account of 〈χj , χk〉 = nδj,k it follows that uj = 〈u, χj〉/n. The collection of these

coefficients comprises an element û ∈ C[Ĝ], deemed the Fourier Transform of u:

û(χj) ≡ 〈u, χj〉 =
n∑

i=1

u(gi)χj(gi). (15.45)
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With this definition our initial expansion is seen as the Fourier series

u(gi) =
1

n

n∑

j=1

〈u, χj〉χj(gi) =
1

n

n∑

j=1

û(χj)χj(gi). (15.46)

In order to reconcile this with the Fourier Series considered in 9.5 we recall that in building the
characters of Alt3 we were lead (by the nose) to the three cube roots of unity. For cyclic groups of
order n, e.g., Zn, this same reasoning leads to n nth roots of unity and the associated characters

χj(p) ≡ exp(2πijp/n), 0 ≤ j, p < n. (15.47)

In this case, (15.45) takes the form

û(χj) =

n∑

p=1

u(p) exp(−2πijp/n)

which is precisely the component form of the Discrete Fourier Transform as expressed in (9.60).
The Parseval Theorem for the DFT, recall (9.71), extends easily to the group setting.

Proposition 15.14. Parseval’s Theorem. Suppose that G is abelian and n = |G|. For u and
v in C[G] we find

〈u, v〉 = 1

n
〈û, v̂〉

Proof:

〈u, v〉 =
n∑

i=1

u(gi)v(gi) =
1

n2

n∑

i=1

n∑

j=1

û(χj)χj(gi)

n∑

k=1

v̂(χk)χk(gi)

=
1

n2

n∑

j=1

n∑

k=1

û(χj)v̂(χk)
n∑

i=1

χj(gi)χk(gi)

=
1

n

n∑

j=1

û(χj)v̂(χj) =
1

n
〈û, v̂〉.

End of Proof.

We next extend the notion of discrete convolution first posed in (9.65). Given u, v ∈ C[G],

(u ⋆ v)(gi) ≡
n∑

j=1

u(gig
−1
j )b(gj). (15.48)

And note that it performs well under the Fourier Transform.

Proposition 15.15. If G is abelian then û ⋆ v = ûv̂ for each u and v in C[G].

Proof: We define gi,j = gig
−1
j and note that for fixed j the gi,j exhaust G as i runs from 1 to n. We
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proceed then to compute

û ⋆ v(χ) = 〈u ⋆ v, χ〉 =
n∑

i=1

(u ⋆ v)(gi)χ(gi)

=
n∑

i=1

n∑

j=1

u(gig
−1
j )v(gj)χ(gi)

=

n∑

j=1

v(gj)

n∑

i=1

u(gig
−1
j )χ(gi)

=
n∑

j=1

v(gj)
n∑

i=1

u(gi,j)χ(gi,jgj)

=

n∑

j=1

v(gj)

n∑

i=1

u(gi,j)χ(gi,j)χ(gj)

=
n∑

j=1

v(gj)χ(gj)
n∑

i=1

u(gi,j)χ(gi,j) = v̂(χ)û(χ) = û(χ)v̂(χ).

End of Proof.

This allows us to express the eigenvalues and vectors of convolution operators. We then show
that adjacency matrices of Cayley graphs of Abelian groups are convolutions. For a ∈ C[G] we
define the convolution operator on C[G] as simply

Cuv ≡ u ⋆ v.

Proposition 15.16. If G is abelian then Cuχk = û(χk)χk for each χk ∈ Ĝ.

Proof: The previous proposition provides for

Ĉuχk(χj) = û ⋆ χk(χj) = û(χk)χ̂k(χj) = û(χk)nδj,k.

From here we invoke (15.46) to arrive at

(Cuχk)(g) =
1

n

∑

j=1

Ĉuχk(χj)χj(g) =
∑

j=1

û(χk)δj,kχj(g) = û(χk)χk(g).

End of Proof.

Proposition 15.17. Let G = {g1, . . . , gn} be an abelian group with irreducible characters
{χ1, . . . , χn}. If S ⊂ G is symmetric and A is the adjacency matrix of Cay(G, S) then the
eigenvalues of A are

λk =
∑

s∈S
χk(s), k = 1, . . . , n,

with associated eigenvectors, vk = (χk(g1), χk(g2), . . . , χk(gn))
T .
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Proof: We employ the basis {eg : g ∈ G} for C[G] where eg(h) = δg,h to express

u ≡
∑

s∈S
es.

By the previous proposition the eigenvalues of the associated convolution operator, Cu, are

û(χk) =
∑

i=1

u(gi)χk(gi) =
∑

s∈S
χk(s) =

∑

s∈S
χk(s),

where the last equality is due to the symmetry of S.
It remains to show that Cu is precisely the adjacency matrix of Cay(G, S). To wit

(Cueg)(h) = (u ⋆ eg)(h) =
∑

s∈S
(es ⋆ eg)(h) =

∑

s∈S

n∑

j=1

es(hg
−1
j )eg(gj) =

∑

s∈S
es(hg

−1)

=
∑

s∈S
es−1(hg−1) =

∑

s∈S
eg(sh) =

∑

s∈S
eg(hs) =

∑

s∈S
(RG(s)eg)(h) = (Aeg)(h).

where the first equality of the second line follows from the symmetry of S. The next equality is
due to s−1 = hg−1 when g = sh, and the next from the abelian hypothesis. The final equalities are
drawn from our definition of right regular representation and Eq. (15.7). End of Proof.

For example, we note that Cay(Alt3, {(123), (132)}) is the equilateral triangle with adjacency
matrix

A =



0 1 1
1 0 1
1 1 0




and eigenvalues

λ1 = χ1((123)) + χ1((132)) = 2,

λ2 = χ2((123)) + χ2((132)) = ω3 + ω2
3 = exp(2πi/3) + exp(4πi/3) = −1

λ3 = χ3((123)) + χ3((132)) = ω2
3 + ω4

3 = exp(4πi/3) + exp(8πi/3) = −1.

More generally, we note that

χj(p) ≡ exp(2πijp/n), 0 ≤ j, p < n

are the irreducible characters of Zn. The Cayley Graph of (Zn, {1, n− 1}), is the regular n-gon and
the eigenvalues of its adjacency matrix are

λj = χj(1) + χj(n− 1) = 2 cos(2πj/n), 0 ≤ j < n. (15.49)

Continuing in this vein, the irreducible characters of the product Z2
n = Zn × Zn are

χj,k(p, q) = exp(2πijp/n) exp(2πikq/n), 0 ≤ j, k, p, q < n

and hence the eigenvalues of the discrete torus, Tn ≡ Cay(Z2
n, {(1, 0), (n− 1, 0), (0, 1), (0, n− 1)}),

are
λj,k = χj,k(1, 0) + χj,k(n− 1, 0) + χj,k(0, 1) + χj,k(0, n− 1)

= 2 cos(2πj/n) + 2 cos(2πk/n), 0 ≤ j, k < n.
(15.50)
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We note that the Tn are a growing sequence of 4-regular graphs whose eigenvalues do not exceed 4
in magnitude. 4 is an eigenvalue for each n and −4 is an eigenvalue only for even n, and that the
spectral gap 2− 2 cos(2π/n) approaches zero like 1/n2.

15.7. Fourier Series and Characters of the Circle

The unit circle
T ≡ {z ∈ C : |z| = 1}

is an infinite abelian group with an infinite family of cyclic subgroups

Tn ≡ {exp(2πim/n) : m = 0, . . . , n− 1}, n = 1, . . . .

With an infinite number of group elements one is naturally compelled to recognize the “distance”
between elements and to expect that any character take near-by group elements to near-by numbers
in C∗. More precisely we shall restrict characters of the circle to be continuous homomorphisms of
the circle. Here continuity of φ means that φ(zn) → φ(z∗) whenever zn → z∗ in T. This latter limit
is unambiguous in the sense that T is closed in the sense that it contains all of its limit points.

Proposition 15.18. If φ is a character of T then ker φ ≡ {z ∈ T : φ(z) = 1} is a closed subgroup
of T.

Proof: We proved long ago that kernels of homomorphisms are subgroups. If {zn}n ⊂ ker φ and
zn → z∗ then φ(zn) → φ(z∗). As φ(zn) = 1 for all n it follows that φ(z∗) = 1, i.e., z∗ ∈ ker φ. End

of Proof.

We next show that the Tn are the only closed subgroups of T. Note that if z = exp(2πit) does
not belong to any Tn then t is not a ratio of two integers, i.e., t is irrational. We will now show
that powers of such a z effectively cover the disk. More precisely, given w ∈ T and an ε > 0 we will
show that there exists a natural number N such that |zN − w| < ε. We write w = exp(2πis) for
s ∈ [0, 1) and zN = exp(2πiNt) = exp(2πi frac(Nt)), where frac(x) is the fractional part of x. We
note that it suffices to prove

Proposition 15.19. Suppose t ∈ [0, 1) is irrational. Given ε > 0 there exists a natural number
m such that frac(mt) 6= 0 and |frac(mt)| < ε.

Proof: Choose N such that 1/N < ε and define the N intervals In = [(n − 1)/N, n/N), n =
1, . . . , N .Each of the N + 1 numbers frac(jt), j = 1, . . . , N + 1 must lie in one of the intervals and,
as N + 1 > N it follows that one interval must contain two of these numbers. In particular, there
exist j 6= k and n such frac(jt) ∈ In and frac(kt) ∈ In. Of course this means that they are close,
namely, |frac(jt)− frac(kt)| = |frac((j − k)t)| < 1/N < ε. Finally, as t is irrational it follows that
frac((j − k)t) 6= 0. End of Proof.

following the notes of Constantin Teleman

Proposition 15.20. The closed proper subgroups of T are the cyclic subgroups Tn of nth roots
of unity, n > 1.

Proof: If q ∈ T is not a root of unity, then its powers are dense in T by Prop. 15.19. So, any closed,
proper subgroup of T consists only of roots of unity. Among those, there must be one of smallest
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argument (in absolute value) or else there would be a sequence converging to 1; these would again
generate a dense subgroup of T. The root of unity of smallest argument is then the generator. End
of Proof.

Proposition 15.21. A continuous 1–dimensional representation T → C∗ has the form z → zn,
for some integer n.

Proof: A continuous map Suppose that φ : T → C∗ is a continuous homomorphism. The latter
implies that φ(zn) = (φ(z))n. The image must lie on the unit circle, because the integral powers
of any other complex number form an unbounded sequence. So φ is a continuous homomorphism
from T itself. Now, ker(φ) ≡ {z ∈ T : φ(z) = 1} is a closed subgroup of T. If ker(φ) = T then
φ ≡ 1 = z0.

If ker(φ) = µn for n > 1, we will now show that φ(z) = z±n, with the same choice of sign for all
z. To see this, define a continuous function

ψ : [0, 2π/n] → R, ψ(0) = 0, ψ(θ) = argφ(exp(iθ));

in other words, we parametrize T by the argument θ, start with ψ(0) = 0, which is one value of the
argument of φ(1) = 1, choose the argument so as to make the function continuous.

Because ker(φ) = µn, ψ must be injective on [0, 2π/n). By continuity, it must be monotonically
increasing or decreasing (Intermediate Value Theorem), and we must have ψ(2π/n) = ±2π: the
value zero is ruled out by monotonicity and any other multiple of 2π would lead to an intermediate
value of θ with φ(exp(iθ)) = 1. Henceforth, ± denotes the sign of ψ(2π/n).

Because φ is a homomorphism and φ(exp(2πi/n)) = 1, φ(exp(2πi/mn) must be an mth root
of unity, and so ψ({2πk/mn}) ⊂ {±2πk/m}, k = 0, . . . , m. By monotonicity, these m + 1 values
must be taken exactly once and in the natural order, so psi(2πk/mn) = ± 2πk/m, for all m and
all k = 0, . . . , m. But then, ψ(θ) = ±n · θ, by continuity, and φ(z) = z±n, as claimed. End of Proof.

15.8. Notes and Exercises

We have followed Steinberg (2011), James and Liebeck (2001) and Krebs and Shaheen (2011).
Our Buckyball work follows Chung and Sternberg (1993). Our construction of the irreducible
representations of Pern and Altn for small n follows the bare-handed approach of Maria Wesslen.
There is a systematic approach for constructing the irreducible representations of Pern for every n
via the method of Young Diagrams.

Our exposition on spectra of symmetric structures follows ?.
For the very big picture, the argument that representation theory was central to the development

of math and physics see ?. This is done more concretely by ? and ?.
Exer. 15.8 is taken from Babai (1979).

1. Use the previous exercise to express the adjacency matrix of Cay(Per3, {(12), (13), (23)}) as

A = RPer3((12)) +RPer3((13)) +RPer3((23))

and to deduce that A is similar to

Π((12)) + Π((13)) + Π((23)) = diag(3,−3, Hv3 +Hb⊥ +Hc⊥, Hv3 +Hb⊥ +Hc⊥)

and so deduce that A has two simple eigenvalues, ±3, and a zero eigenvalue of multiplicity 4.
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2. It appears that RPer3 = σ. Build

(C[Per3], RPer3) = (V1, π
(1))⊕ (V2, π

(2))⊕ (V3,1, π
(3))⊕ (V3,2, π

(3))

where Vk is the column space of ∑

g∈Per3

π(k)(g)σ(g)

for k = 1, 2, and V3,i is the column space of

∑

g∈Per3

π
(3)
i,1 (g)σ(g).

3. Show that the right regular representation, (C[G], RG), is unitary, i.e., that (RG(g))
∗ = RG(g

−1)
for each g ∈ G.

4. Prove that the set of class functions, Class[G]) of Eq. (15.18), is a subspace of C[G]. Prove
that the dimension of Class[G]) is the number of conjugacy classes of G.

5. Use the fact, from Exer. 14.14, that Dih4/SDih4 ∼ V4 and the fact that V4 is abelian to lift
the four characters of V4 to Dih4. Use the sum of squares formula to deduce that the degree of
the remaining irreducible representation is 2. Complete the character table with the standard
matrix representation.

Dih4 I Rπ/2, R3π/2 Rπ Hei Hdi

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 −1 1 −1 1
χ4 1 −1 1 1 −1
χ5 2 0 −2 0 0

Table 15.4. The character table for Dih4.

6. Show that LG(h)v(x) = v(h−1x) defines a representation (C[G], LG). Show that it commutes
with RG in the sense that RG(g)LG(h) = LG(h)RG(g) for all g, h ∈ G. Use this and Eq. (15.7)
to show that LG commutes with the adjacency matrix of every Cayley graph of G. Argue that
if G has p irreducibles then each such adjacency matrix has at most p distinct eigenvalues.

7. (a) Show that the graph of benzene carbons is Cay(SDih6, {Rπ/3, R5π/3}). (b) Use (a) and
Prop. 15.17 to show that the eigenvalues of the adjacency matrix are

λk = 2 cos((k − 1)π/3), k = 1, . . . , 6.

(c) Construct the Huckel energy for Benzene. (d) Use Prop. 15.17 to compute the eigenvectors
and illustrate their orbitals.

8. Prove that the eigenvalues of Cay(G,H) obey (need full dress Babai to handle t-bond ratio)

λki,1 + · · ·+ λki,ni
=

∑

g1,...gk∈H
χi

(
k∏

s=1

gs

)
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where the sum is over all k-tuples of elements drawn from H . Use this to prove that the
eigenvalues of Π4 (recall Eq. (***) obey

λ4,1 + λ4,2 + λ4,3 = α− 1− t

λ24,1 + λ24,2 + λ24,3 = 8− 2α

λ34,1 + λ34,2 + λ34,3 = 4α+ 2 + (6α− 6)t+ 6αt2 − t3.

Now use the Newton Identities, Eq. (11.73), to recover the characteristic polynomial Eq. (***.
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16. Graph Theory∗

We have studied electrical, mechanical and metabolic networks in the preceding chapters. We
here study their natural abstraction.

16.1. Graphs, Matrices and Groups

A graph, Γ, is a pair of sets of vertices, V , and edges, E. We order the vertices v1 through vn
and denote the adjacency matrix of Γ by AΓ, where AΓ(i, j) is the number of edges between vi and
vj . The degree of vi is denoted deg(vi) and is defined to be the number of edges with an end at vi.

Preview...

16.2. Trees and Molecules

A tree is a graph without loops.
Given v ∈ V there exist deg(v) subtrees, Γi(v), see Figure 16.1, of Γ stemming from v. (More

precisely, if v1, . . . , vd are the vertices adjacent to v then Γi(v) is the union of paths whose first edge
is vvi.) The number of edges in the ith subtree stemming from v is |Ei(v)| and the Jordan Index
of v is the size of the largest subtree,

J(v) ≡ max
i

|Ei(v)|.

If J(v) = |Ek(v)| we call Γk(v) a maximal subtree stemming from v.

v v
1

v
2

v
3 (A) (B)

14
14
14

14

14

11

12

14

14

14

14

12

12

87

Figure 16.1. An illustration of the Jordan Index. (A) As deg(v) = 3 there are three subtrees
stemming from v. Γ1(v) is colored black, Γ2(v) is red, and Γ3(v) is blue. (B) We have labeled each
vertex with its Jordan Index.

Jordan used this index to divide trees into those with a centroid and those with a bicentroid.

Proposition 16.1. If Γ = (V,E) is a tree then there exists either a single vertex (centroid) with
Jordan Index less than or equal to (|V | − 1)/2 or a single pair of adjacent vertices (bicentroid)
with Jordan Indices of |V |/2. All other vertices have Jordan Indices strictly greater than |V |/2.

Proof: Set n = |V | and m = n − 1. Let v1 denote a vertex with the smallest Jordan Index, call it
J1. We first show that J1 ≤ n/2.

Suppose u ∼ v1 is a vertex belonging to a maximal subtree stemming from v1. The neighbors
of u, {v1, v2, . . . , vdeg(u)}, generate subtrees stemming from u with sizes |Ei(u)|. As these subtrees
exhaust the full tree we find

deg(u)∑

i=1

|Ei(u)| = m. (16.1)
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Similarly, as there are m− J1 edges outside the maximal tree stemming from v1 then

|E1(u)| = m− J1 + 1 = n− J1. (16.2)

Also, as J1 is minimal it follows that

J1 ≤ J(u) = max
i

|Ei(u)|.

As (16.1) implies |Ei(u)| < J1 for i ≥ 2 it follows that |E1(u)| ≥ J1 and so from (16.2) it follows
that m− J1 + 1 ≥ J1, i.e., J1 ≤ n/2.

We now show that all other vertices have larger Jordan indices. Take w ∈ V and note that it
lies within one subtree stemming from v1, say w ∈ Γ1(v1). It follows that there is subtree stemming
from w with at least m−|E1(v1)|+dist(w, v1) edges. As |E1(v1)| ≤ J1 and dist(w, v1) ≥ 1 it follows
that J(w) ≥ m − |E1(v1)| + dist(w, v1) ≥ m − J1 + 1. Hence, if J1 < n/2 than J(w) > n/2. If
instead J1 = n/2 then there is a unique maximal subtree stemming from v1 (for if two trees had n/2
edges together we would have n > m edges). It follows that J1(w) > n/2 unless w is both adjacent
to v1 and lies in its maximal subtree - in which case J(w) ≥ n/2. To establish equality note that
the subtree stemming from w that contains v1 has m− J1 + 1 = n/2 edges. End of Proof.

Two vertices are similar if there is an automorphism that takes one to the other. An edge is
called a symmetry edge if its two ends are similar. Action/Orbit/Burnside

If g ∈ Per(Γ) then J(v) = J(gv) for all v ∈ V . Note that g preserves adjacency and so degree,
so if d subtrees stem from v then d subtrees stem from gv and their sizes are unchanged. Hence the
centroid (bicentroid) is fixed by every g. We need: If two adjacent vertices have the same Jordan
index then they are the bicentroid. We define

p∗ ≡ [Per(Γ) : V ] and q∗ ≡ [Per(Γ) : E]

to deduce p∗ − (q∗ − s) = 1 from Burnside we prove

|Fixg(V )| = |Fixg(E)|+ 1

for graphs with centroid. To prove this suppose g fixes e but flips its vertices then e is a bicentroid.
So if g fixes an edge then it fixes both vertices. Now suppose that g fixes two disjoint edges, consider
the unique path that joins them - as g preserves adjacency it must preserve this path. It really
follows that Fixg(E) is a tree!

Next we suppose {Γi} to be a list of the trees with p vertices, and prove

tp∑

i=1

[Per(Γi) : Vi] = Tp.

(This “feels” like an application of PET itself). To see this, look at small p (4,5) and observe that
[Per(Γi) : Vi] is the number of roots. Even “harder” is the statement

tp∑

i=1

([Per(Γi) : Ei]− si) = Lp

the number of trees with p points rooted at an edge which is not a symmetry edge. Hence, tp =
Tp − Lp. So if L(x) is the counting series for trees rooted at a nonsymmetry line, then

t(x) = T (x)− L(x).
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We now focus on distances within trees as a simple manifestation of the basic question of structure
and function. We ask how the arrangement of the carbons in alkanes effects their boiling point. An
alkane is an acyclic hydrocarbon of the form CnH2n+2. We have illustrated the three isomers of
pentane in Figure 16.2

Figure 16.2. The three isomers of pentane.

The first question is one of enumeration... (Cayley/Polya)
Let Tp denote the number of rooted trees on p vertices. Its generating function is

T (x) =
∑

p

Tpx
p,

also, if T (n)(x) is the generating function for the rooted trees with root of degree n then

Proposition 16.2 The generating function for rooted trees obeys

T (x) = x exp

( ∞∑

k=1

T (xk)/k

)

Proof: We first find, T (n), the generating function which enumerates rooted trees in which the root
has degree n. We note that

T (x) =
∑

n

T (n)(x)

and T (0)(x) = x and T (1)(x) = xT (x). Each of the latter trees corresponds in a natural way to a
”combination with repetition” of n rooted trees.

More specifically, given a collection of n rooted trees, a new rooted tree is formed by adding
one new point and making it adjacent to each of the roots of then given rooted trees. Clearly all
trees whose roots have degree n can be formed in this manner. To find out how many there are, we
consider the power group EPern with object set Y X where E is the identity group, X = {1, . . . , n},
and Y is the set of all rooted trees. Then each function in Y X corresponds to an ordered n-tuple
of rooted trees. We define the weight of each rooted tree in Y to be the number of points in the
tree. Then T (x) enumerates the elements of Y by weight and is called the “figure counting series”
for Y . Thus the weight of each function in Y X , as defined by (***, is the total number of points in
the n rooted trees of the n-tuple to which the function corresponds.

Since Pern consists of all permutations of X , the orbits of the power group EPern correspond
precisely to rooted trees whose root has degree n. Note that the weight of each orbit, which is the
weight of any function in it, is just one less than the total number of points in the rooted tree to
which the orbit corresponds. Therefore on applying PET with A = Pern and T (x) as the figure
counting series, we have Z(Pern, T (x)) as the function counting series, and the coefficient of xp in
Z(Pern, T (x)) is the number of rooted trees of order p+1 whose roots have degree n. Multiplication
of Z(Pern, T (x)) by x corrects the weights so that the coefficient of xp in xZ(Pern, T (x)) is the
number of these trees with p points. Then on summing over all possible values of n, T (x) itself is
obtained:

T (x) = x
∞∑

n=0

Z(Pern, T (x)). (16.3)

The proof is completed by applying the identity (14.44) for sums of cycle indexes to the right side
of (16.3). End of Proof.
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Proposition 16.2 The generating function for rootless trees obeys

L(x) = T (x)− (T 2(x)− T (x2))/2. (16.4)

Proof:

End of Proof.

With θ(Γ) the boiling point we denote the Wiener Index

W (Γ) =
1

2

∑

u,v∈V
dist(u, v)

and the Wiener Polarity

WP (Γ) = |{{u, v} ∈ V × V : dist(u, v) = 3}| (16.5)

The key result is

θ(Γ)− θ(Γ0) =
98

n2
(W (Γ)−W (Γ0)) + 5.5(P (Γ)− P (Γ0))

where θ(Γ) is boiling point..., Γ0 denotes the normal (linear) isomer and at this geometry

W (Γ0) = n(n + 1)(n− 1)/6 and P (Γ0) = n− 3

and

Alkane Methane Ethane Propane Butane Pentane Hexane Heptane Octane
Formula CH4 C2H6 C3H8 C4H10 C5H12 C6H14 C7H16 C8H18

Boiling point -162 -89 -42 0 36 69 98 126

Table 16.1. Boiling points of the normal isomers of the first 8 alkanes.

The distance, dij ≡ dist(vi, vj), from vi to vj is the number of edges, without backtracking,
required to get from vi to vj . For example, the adjacency matrix for the tree in Figure 16.3(A) and
its associated distance matrix are

A =




0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 1 0 1
0 0 1 0 0 0
0 0 0 0 0 1
1 0 1 0 1 0




and D =




0 3 2 3 2 1
3 0 1 2 3 2
2 1 0 1 2 1
3 2 1 0 3 2
2 3 2 3 0 1
1 2 1 2 1 0




Given an orientation on the edges it is of interest to record the vertex-edge incidence matrix
B where

Bij = ±1 if vertex i is the positive(negative) end of edge j.

Its connection to D is

Proposition 16.4. If Γ is a tree with n vertices with distance matrix D and vertex-edge incidence
matrix B then BTDB = −2In−1.
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Proof: The product bisdijbit = 0 unless vi is an end of es and vj is an end of ei. Suppose es = {w, x}
and et = {y, z}, where x and z are positive ends. Then

∑

i,j∈V
bisdijqjt = dwy − dwz − dxy + dxz.

If s = t, then dwy = dxz = 0 while dwz = dxy = 1, so the sum is −2. If s 6= t, it may still happen
that w = y or x = z. If w = y, then dwy = 0, dxz = 2, and dwz = dxy = 1, so the sum is zero. The
case x = z is handled similarly. If w, x, y, and z are four distinct vertices then either x is on the
(unique) path from w to et, or w is on the path from x to et. These cases are similar. We argue the
first, i.e., dwy = dxy+1 and dwz = dxz+1. In this case, the sum is dxy+1− (dxz+1)−dxy+dxz = 0.
End of Proof.

We next define K = BTB and note that

K = 2I + A(Γ∗) and L = BBT .

and establish

Proposition 16.5. If Γ is a tree with distance matrix D and vertex-edge incidence matrix B
then the eigenvalues of −2(BTB)−1 interlace the eigenvalues of D.

Proof: We note that the columns of B are linearly independent and that each contains exactly one
1 and one −1 while all other elements are zero. Applying Gram–Schmidt to the columns of B we
find Q = BM and we note that e ∈ Rn, the column of ones, is orthogonal to R(B) and so the
augmented matrix U ≡ (BM e/

√
n) is orthogonal and

UTDU =

(
MTBTDBM MTBTDe/

√
n

eTDBM/
√
n eTDe/n

)
=

(
−2MTM MTBTDe/

√
n

eTDBM/
√
n 2W/n

)
(16.6)

Next, from MTKM =MTBTBM = I we can take inverses and find K−1 =MMT and so K−1 and
MTM have the same spectrum and so the result follows from Exer. 12.8. End of Proof.

We note that trD = 0 and take the trace of (16.6) and find

0 = trD = tr(UTDU) = tr(−2MTM) + 2W/n

which establishes

Proposition 16.6. If Γ is a tree on n vertices with vertex-edge incidence matrix B then W (Γ) =
ntr((BTB)−1)

Work out W (T ) for the pentane isomers.

16.3. Spanning Trees and Electrical Networks

A spanning tree of G is a tree that hits every vertex. Even small graphs have many spanning
trees, e.g, the graphs of Figure 14.7 have 75 and 81 spanning trees respectively. We have plotted 3
of these in Figure 16.3
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Figure 16.3. Three of the 75 spanning trees of the graph in Figure 14.7(A).

Their enumeration would very tedious, linear algebra provides a very simple formula.

We count the number of spanning trees in a graph and proceed to count pathlengths in trees.

The basic construction is deletion and contraction. The subgraph obtained by taking graph
G and deleting edge e, but leaving all other edges and vertices as is, is denoted G − {e}. The
contraction of a graph, G/{e} is the multigraph (not a subgraph) obtained from G by contracting
the edge e = {v, w} until the two vertices v and w coincide. Call this new vertex vw. We denote
by κ(G) the number of spanning trees in G and prove the deletion–contraction formula

Proposition 16.7. For any edge e in the graph G, κ(G) = κ(G− {e}) + κ(G/{e}).

Proof: The edge e divides the spanning trees of G into (i) those that contain e and (ii) those that
do not contain e.

Regarding (ii), a spanning tree misses e iff it is a spanning tree of G−{e}. Regarding (i) we show
that a spanning tree containing e is equivalent to a spanning tree of G/{e}. Note that G/{e} has
one less vertex and one less edge than G, but except for e, every edge of G corresponds to a unique
edge of G/{e}, and vice–versa. If E(T ) denotes the edges of G corresponding to a spanning tree
then E(T )−{e} corresponds to T ′, a set of edges in G/{e}. Since the subgraph corresponding to T ′

is connected and has the right number of edges, T ′ is a spanning tree of G/{e}. The correspondence
also works in reverse. End of Proof.

This property of κ is reminiscent of the multilinearity of the determinant.
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Proposition 16.8. Elementary row operations do not change the determinant. That is, for
a ∈ R,

det(b1; . . . ; bi−1; bi; bi+1; . . . ; bn) = det(b1; . . . ; bi−1; bi + abj ; bi+1; . . . ; bn) (16.7)

The determinant is multilinear in the sense that

det(b1; . . . ; bi−1; abi; bi+1; . . . ; bn) = a det(b1; . . . ; bi−1; bi; bi+1; . . . ; bn) (16.8)

and
det(b1; . . . ; bi−1; v + w; bi+1; . . . ; bn) = det(b1; . . . ; bi−1; v; bi+1; . . . ; bn)

+ det(b1; . . . ; bi−1;w; bi+1; . . . ; bn).
(16.9)

Proof: Eq. (16.7) follows from the product formula, Eq. (3.21), det(EB) = det(E) det(B) where E
is the elimination matrix comprised of the identity matrix with the addition of a in row j column
i. As E is unit–triangular we find det(E) = 1 and conclude Eq. (16.7).

Our second claim also follows from the product formula, det(AB) = det(A) det(B) where A is
the identity matrix except for Aii = a.

Regarding the third claim, if the n−1 rows (b1; . . . ; bi−1; bi+1; . . . ; bn) are linearly dependent then
all three determinants in (16.9) are zero and so equality holds trivially. If they are instead linearly
independent that we can complete them to a basis for Rn with the vector bi. We then expand v
and w in this basis as

v =

n∑

j=1

vjbj and w =

n∑

j=1

wjbj .

Now it follows from Eq. (16.7) that

det(b1; . . . ; bi−1; v + w; bi+1; . . . ; bn) = det(b1; . . . ; bi−1; v + w − (v1 + w1)b1; bi+1; . . . ; bn).

Applying this reasoning to the remaining rows brings

det(b1; . . . ; bi−1; v + w; bi+1; . . . ; bn) = det(b1; . . . ; bi−1; (vi + wi)bi; bi+1; . . . ; bn)

= (vi + wi) det(b1; . . . ; bi−1; bi; bi+1; . . . ; bn)
(16.10)

where the second equality follows from Eq. (16.8). Now rebuild v and w individually using Eq. (16.7)
again. More precisely

vi det(b1; . . . ; bi−1; bi; bi+1; . . . ; bn) = det(b1; . . . ; bi−1; vibi; bi+1; . . . ; bn)

= det(b1; . . . ; bi−1; vibi + v1b1; bi+1; . . . ; bn)

and on continuation we find

vi det(b1; . . . ; bi−1; bi; bi+1; . . . ; bn) = det(b1; . . . ; bi−1; v; bi+1; . . . ; bn).

as the same logic applies to w we deduce Eq. (16.9) from Eq. (16.10). End of Proof.

Proposition 16.9. Kirchhoff Tree Theorem. The number of spanning trees in a graph is the
determinant of the reduced Laplacian. That is κ(G) = det(L0(G)).

We will see that the determinant of the matrix of distances depends solely on n. For this we
need one more take on the determinant.
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We note that if Ĩ is an elementary perturbation matrix then BĨ simply swaps two columns of
B and det(BĨ) = − det(B). This leads to the nice

Proposition 16.10. Cofactor Expansion. For B ∈ Rn×n we denote its elements by bi,j and
denote the matrix achieved by ignoring row i and column j by B(−i,−j). For any row index, i,
we may expand the det(B) along this row as

det(B) =

n∑

j=1

bi,j(−1)i+j det(B(−i,−j)). (16.11)

Proof: To minimize notation let us set (for now) i = 1. By multilinearity we can write

det(B) =
n∑

j=1

b1,j det(ej ; b2; . . . ; bn).

The first det can be reduced, by row reduction to

det

(
1 0n−1

0n−1 B(2 : n, 2 : n)

)
= det(B(2 : n, 2 : n)).

while the second det can be reduced, by row reduction to

det

(
0 1 0(1, n− 2)

B(2 : n, 1) 0(n− 1, 1) B(2 : n, 3 : n)

)
= − det(B(−1,−2))

after swapping columns. the third det can be reduced, by row reduction to

det

(
0(1, 2) 1 0(1, n− 3)

B(2 : n, 1 : 2) 0(n− 1, 1) B(2 : n, 4 : n)

)
= det(B(−1,−3))

after swapping columns twice. End of Proof.

We now deduce from these new results on determinants new formulations of the characteris-
tic polynomials for trees. For the tree Γ with adjacency matrix T we denote the characteristic
polynomial

χ(Γ, z) ≡ det(zI − T ).

Proposition 16.11. Suppose that Γ is a tree. If v1 is an isolated vertex then

χ(Γ, z) = zχ(Γ1, z) (16.12)

where Γ1 is the tree without v1. If the vertex v1 is adjacent only to vertex v2 Then

χ(Γ, z) = zχ(Γ1, z)− χ(Γ12, z) (16.13)

where Γ12 is the graph without v1 and v2.

Proof: We expand by rows

χ(Γ, z) = det(ze1 − t1; ze2 − t2; · · · ; zen − tn)

= det(ze1; ze2 − t2; · · · ; zen − tn)− det(t1; ze2 − t2; · · · ; zen − tn)

= zχ(Γ1, z)− χ(Γ12, z)
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because... End of Proof.

If Γ = Pn is simply a path than this permits us to write

χ(Pn, z) = zχ(Pn−1, z)− χ(Pn−2, z)

and hence χ(Pn, z) = Un(z/2), the nth Chebyshev polynomial. As an example lets watch Figure 16.4

1
56

2
43

=z = z2 z z

= z2 z2 z

Figure 16.4 An illustration of the decomposition of a tree into 3 paths, that facilitate the
construction of the full characteristic polynomial.

With reference to Figure 16.4 we find

χ(Γ, z) = z2U4(z/2)− z2U2(z/2)− zU3(z/2)

= z2(z4 − 3z2 + 1)− z2(z2 − 1)− z(z3 − 2z)

= z2(z4 − 5z2 + 4)

has roots 0, 0,±1,±2.

16.4. Cycles and Girth

A cycle of length r starting at vertex v1 is a sequence of r vertices

c = (v1, v2, . . . , vr)

where vi is adjacent to vi+1 for i = 1, . . . , r − 1 and vr is adjacent to v1 and backtracking is not
allowed, i.e., vi+1 6= vi−1 for i = 2, . . . , r − 1 and v2 6= vr.

Trace theorem. Define Ar via (Ar)i,j is the number of paths of length r, without backtracking,
from vertex i to vertex j. Note that A0 = I and A1 = A, the adjacency matrix. As an example lets
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work with the Cayley graph in Figure 14.7(A). Its adjacency matrix is

A =




0 1 0 0 1 1
1 0 1 1 0 0
0 1 0 1 0 1
0 1 1 0 1 0
1 0 0 1 0 1
1 0 1 0 1 0




(16.14)

And so lets record

A2 =




0 0 2 2 1 1
0 0 1 1 2 2
2 1 0 1 2 0
2 1 1 0 0 2
1 2 2 0 0 1
1 2 0 2 1 0




and A3 =




2 2 3 3 1 1
2 2 1 1 3 3
3 1 2 1 3 2
3 1 1 2 2 3
1 3 3 2 2 1
1 3 2 3 1 2




Proposition 16.12. Suppose the graph is k regular
a) A2

1 = A2 + kI,
b) for r ≥ 2, A1Ar = ArA1 = Ar+1 + (k − 1)Ar−1.
c) for real t ( ∞∑

r=0

trAr

)
(I − tA + (k − 1)t2I) = (1− t2)I. (16.15)

Proof: Note that

(A2
1)i,j =

n∑

m=1

(A1)i,m(A1)m,j

If a product is nonzero then i and m are adjacent and m and j are adjacent. If i 6= j then no
backtracking is possible and so (A2

1)i,j is the number of paths of length 2 between i and j. If i = j
then a path of length 2 means to step to adjacent vertex and then step back. As there are precisely
m vertices we find (A2

1)i,i = m. This proves (a).

Note that

(ArA1)i,j =

n∑

m=1

(Ar)i,m(A1)m,j

If a product is nonzero then there is a straight (no bt) path of length r from i to m followed by a
path of length one from m and j. If the r− 1st vertex on that path is not j then the composite is a
straight path of length r+ 1, and there are (Ar+1)i,j such paths. Otherwise, backtracking occurred
at the last step, and there are (k − 1)(Ar−1)i,j such paths.
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For (c) we note that

(I+tA1 + t2A2 + · · ·+ tmAm)(I − tA+ (k − 1)t2I) = (I + tA1 + t2A2 + · · ·+ tmAm)

− (tA1 + t2A2
1 + t3A1A2 + · · ·+ tm+1A1Am) + (k − 1)(t2I + t3A1 + t4A2 + · · ·+ tm+2Am)

= I + t2(A2 −A2
1) + t3(A3 − A1A2) + · · ·+ tm(Am − A1Am−1)− tm+1A1Am

+ (k − 1)(t2I + t3A1 + t4A2 + · · ·+ tm+2Am)

= I − t2kI − (k − 1)(t3A1 + t4A2 + · · ·+ tmAm−2)− tm+1A1Am

+ (k − 1)(t2I + t3A1 + t4A2 + · · ·+ tm+2Am)

= (1− t2)I − tm+1A1Am + (k − 1)tm+1Am−1 + (k − 1)tm+2Am

= (1− t2)I − tm+1Am+1 + (k − 1)tm+2Am.

On taking m→ ∞ we arrive at Eq. (16.15). End of Proof.

We can make it a bit cleaner with

Tm ≡
m/2∑

r=0

Am−2r.

For then ( ∞∑

m=0

tmTm

)
(I − tA + (k − 1)t2I) = I. (16.16)

To see this

∞∑

m=0

tmTm =

∞∑

m=0

m/2∑

r=0

Am−2rt
m

=

∞∑

r=0

∞∑

m=2r

Am−2rt
m

=

∞∑

r=0

t2r
∞∑

m=2r

Am−2rt
m−2r

=

( ∞∑

r=0

t2r

)( ∞∑

m=0

Amt
m

)

=
1

1− t2
(1− t2)I = I.

Lets record,

U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1, U3(x) = 8x3 − 4x, U4(x) = 16x4 − 12x2 + 1.
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Proposition 16.13. The number, cℓ, of cycles of length ℓ through a vertex is c0 = k, c1 = 0

2n(c0 + c2) = (k − 1)

n−1∑

j=0

U2

(
µj

2
√
k − 1

)

2n(c1 + c3 = (k − 1)3/2
n−1∑

j=0

U3

(
µj

2
√
k − 1

)

2n(c0 + c2 + c4) = (k − 1)2
n−1∑

j=0

U4

(
µj

2
√
k − 1

)

2n(c1 + c3 + c5) = (k − 1)5/2
n−1∑

j=0

U5

(
µj

2
√
k − 1

)

2n(c4 + c6) = (k − 1)3
n−1∑

j=0

U6

(
µj

2
√
k − 1

)

Now

c1 = 0 =

n−1∑

j=0

U1

(
µj

2
√
k − 1

)
=

1√
k − 1

n−1∑

j=0

µj

while

n = n(c0 + c2) = (k − 1)
n−1∑

j=0

U2

(
µj

2
√
k − 1

)
= (k − 1)

n−1∑

j=0

(
µ2
j

k − 1
− 1

)

and so

nk =
n−1∑

j=0

µ2
j (16.17)

allows us to read the degree from the eigenvalues. Next

nc3 = n(c1 + c3) =
n−1∑

j=0

µ3
j

delivers c3. Next

n(1 + c4) = n(c0 + c2 + c4) = (k − 1)2
n−1∑

j=0

U4

(
µj

2
√
k − 1

)

=
n−1∑

j=0

µ4
j − 3(k − 1)

n−1∑

j=0

µ2
j + n(k − 1)2

= n(k − 1)2 − 3nk(k − 1) +

n−1∑

j=0

µ4
j

delivers c4.
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It now follows that the spectra determines the cycle sequence, and so ask to what degree do
the Cj determine the graph. Starting with our example we see that (*** gives c3 = 2 (which as
orientation does not count really means c3 = 1) so each vertex is a vertex of one triangle example,
its eigenvalues are 3, 1, 0, 0,−2,−2 and from these we easily deduce f3 = 2 which in fact uniquely
determines the graph! Next go to the truncated tetrahedron in Figure 14.4. We find its degree is 3.
Then f3 = 2 dictates that every vertex lies in exactly one triangle. So we find 4 triangles. To reach
degree each triangle must have at least one edge to another triangle. If two triangles are however
joined by two edges then a vertex would have cycle length 4, but f4 = 0 so each triangle has exactly
one edge to each triangle, and so we can have only Figure 14.4. With regard to the Buckyball in
Figure 14.6 we find k = 3 while f3 = f4 = 0, so no triangles or squares, while f5 = 1 so every vertex
is in 1 pentagon so there are 12 = 60/5 pentagons. The spectrum also reveals that f7 = f8 = 0.Now
if two pentagons were connected by more than one edge we would contradict either f4 = f7 = f80
or f5 = 1. And so we get Figure 14.6.

The girth of a graph is the length of its shortest cycle.

Proposition 16.14. For odd prime q the graph Xq has large girth. In particular

lim inf
q→∞

girth(Xq)

log3 |Xq|
≥ 1

3 log3(1 +
√
2)
.

Proof: Write g for girth(Xq). As Xq is vertex transitive it contains a cycle of length g starting and
ending at I ∈ SL2(q):

x0 = I, x1, . . . , xg−1, xg = I.

By the Cayley construction there exist y1, y2, . . . , yg ∈ Sq such that xi = y1y2 · · · yi−1yi. Let ỹi
be the unique element in S for which τq(ỹi) = yi. Now ỹ1ỹ2 · · · ỹg is an element of H , the group
generated by S. As we proved that H is free it follows that ỹ1ỹ2 · · · ỹg 6= I. On the other hand,
since τq(ỹ1ỹ2 · · · ỹg) = y1y2 · · · yg = xg = I it follows that each element of ỹ1ỹ2 · · · ỹg − I is divisible
by q and hence ‖ỹ1ỹ2 · · · ỹg − I‖ ≥ q. End of Proof.

16.5. The Isoperimetric Constant and Expanders

An increasing sequence of graphs is said to be an expanding sequence if the number of edges
connecting a set to its complement increases in proportion to the size of the smaller set. To make
this precise, suppose that Γ = (V,E) is a graph. If U is a subset of the vertex set, V , we define its
boundary

∂U = {{v1, v2} ∈ E : v1 ∈ U, v2 ∈ V \ U}
to be those edges that connect U to V \U . With this we may define the expander constant of Γ

h(Γ) ≡ min
U⊂V

|∂U |
min{|U |, |V \ U |} . (16.18)

A family of graphs, {Γn = (Vn, En)}, is said to be an expander family when |Vn| → ∞ and there
exists a δ > 0 such that

lim inf
n→∞

h(Γn) ≥ δ.

Examples: The family of torii Tn is not expanding, choose U to be a natural half, so |U | = n2/2
while |∂U | = 2n so h(Tn) ≤ 4/n. We will see that a particular scheme for doubling the degree
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at each node does indeed produce an expanding family. The proof of expansion will hinge on the
connection between the expander constant and the spectral gap of the adjacency matrix.

Proposition 16.15. Suppose that Γ is a connected regular graph of degree k with adjacency
matrix AΓ.
(i) k is a simple eigenvalue of AΓ.
(ii) Each eigenvalue of AΓ has magnitude less that k.

Proof: We number the nodes from 1 to n and use i ∼ j to denote that node i is adjacent to node j.
As Γ is regular of degree k it follows that every row sum of AΓ equals k. In other words, the vector
of ones is an eigenvector of AΓ with eigenvalue k. To see that k is simple we suppose Ax = kx and
‖x‖ = 1 and that |xj| ≥ |xi| for i = 1 : n. Now (Ax)j = kxj means

∑

i∼j
xi = kxj

which implies that xi = xj for all i ∼ j. By the same argument it follows that all elements adjacent
to each of these i is also xj . As Γ is connected it follows that all xi = xj .

Regarding part (ii), suppose Ax = zx and that, as above, xj is an element of x of maximum
magnitude. We suppose, without loss, that xj > 0 and from (Ax)j = zxj deduce

|z|xj = |zxj | = |(Ax)j | =
∣∣∣∣∣
∑

i∼j
Ai,jxi

∣∣∣∣∣ ≤
∑

i∼j
Ai,j|xi| ≤ xj

∑

i∼j
Ai,j ≤ kxj ,

and conclude that |z| ≤ k. End of Proof.

It follows that k is the largest eigenvalue of Γ and so its next largest eigenvalue is

λ(Γ) = max
x⊥1

xTAΓx

xTx
. (16.19)

Its often more convenient to study the associated graph Laplacian

∆Γ ≡ kI −AΓ.

Because

k − λ(Γ) = µ(Γ) = min
x⊥1

xT∆Γx

xTx
(16.20)

and

xT∆Γx = xT (kI −AΓ)x =
∑

i

xi

(
kxi −

∑

j∼i
xj

)
=
∑

j∼i
(xj − xi)

2.

The spectral connection is

Proposition 16.16. If Γ is a connected regular graph of degree k then

h(Γ) ≥ k − λ(Γ)

2
. (16.21)
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Proof: We partition the vertex set as V = U ∪ (V \U) and build the Rayleigh candidate for (16.20)

xj =

{
1
|U | if j ∈ U
−1

|V \U | if j 6∈ U.

We note that xT1 = 0 and

xTx =
1

|U | +
1

|V \ U | and xT (kI − AΓ)x = |∂U |
(

1

|U | +
1

|V \ U |

)2

.

And so

µ(Γ) ≤ xT (kI − AΓ)x

xTx
= |∂U |

(
1

|U | +
1

|V \ U |

)
≤ 2|∂U |

min{|U |, |V \ U |}
for each choice of U . Taking the minimum over U ⊂ V we find µ(Γ) ≤ 2h(Γ). End of Proof.

The Margulis Construction. Γn = (V,E) with vertex set V = Z2
n. Let

T1 =

(
1 2
0 1

)
, T2 =

(
1 0
2 1

)
, e1 =

(
1
0

)
, e2 =

(
0
1

)
(16.22)

and each vertex v ∈ V is adjacent to the four vertices T1v, T2v, T1v+ e1 and T2v+ e2 and their four
inverses. We illustrate it in Figure 16.5 when n = 3.

We will make use of Fourier Analysis on Z2
n. So we recall the characters

χζ(z) = exp(2πiζTz/n), z = (z1, z2) ∈ Z2
n, ζ = (ζ1, ζ2) ∈ Z2

n.

We will invoke Parseval’s Theorem and so must also understand how to transform the Margulis
compositions u(Tiz + ei). In particular we will need

Proposition 16.17. Suppose that A ∈ GL2(n), b ∈ Z2
n. If u ∈ C[Z2

n] and v(z) = u(Az + b) then

v̂(ζ) = exp(2πiζTA−1b/n)û(A−T ζ)

Proof: We first record how characters transform

χζ(A
−1z) = exp(2πiζTA−1z/n) = exp(2πi(A−T ζ)Tz/n) = χA−T ζ(z) (16.23)

and then carry this through to v̂,

v̂(ζ) = 〈v, χζ〉 =
∑

z∈Z2
n

v(z)χζ(z) =
∑

z∈Z2
n

u(Az + b)χζ(z).

As z 7→ Az + b is a bijection of Z2
n we may change variables, z′ = Az + b, to arrive, via (16.23), at

v̂(ζ) =
∑

z′∈Z2
n

u(z′)χζ(A−1(z′ − b))

= χζ(−A−1b)
∑

z′∈Z2
n

u(z′)χζ(A−1z′)

= χζ(−A−1b)
∑

z′∈Z2
n

u(z′)χA−T ζ(z′)

= exp(2πiζTA−1b/n)û(A−T ζ).
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End of Proof.

Whereas the girth story hinged on the action of T1 and T2 on the bow-tie, here it will hinge on
their action on the diamond.

0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2

z
1

(n/2,0)(−n/2,0)

z
2

(0,n/2)

(0,−n/2)

Figure 16.5. The Margulis Construction. (Left) Γ3. (Right) The diamond, Dn.

The proof that λ(Γn) stays clear of k = 8 will follow from Rayleigh’s Principle and Parseval’s
formula and a careful study of how T1 and T2 and their inverses deform the diamond in Figure 16.5.
We examined this action in Exer. 1.5. In particular, in Figure 1.6 we observed that T±1

1 shear
right and left while T±1

2 shear up and down. To better quantify this action we seek a means for
comparing a point z to its image under T±1

j . This leads us to seek means for comparing points in

Z2
n. We write z ∈ Z2

n as z = (z1, z2) and assume that each zj ∈ [−n/2, n/2) and note the natural
partial ordering

(z1, z2) ≻ (z′1, z
′
2) if |z1| ≥ |z′1|, |z2| ≥ |z′2| and |z1|+ |z2| > |z′1|+ |z′2|, (16.24)

suffices, in the sense that it permits us to order the action of T±1
j on the diamond

Dn ≡ {z ∈ Z2
n : 2|z1|+ 2|z2| < n},

depicted in Figure 16.5(B).

Proposition 16.18. For each z ∈ Dn \ 0 either:
(a) Three of the four points, T±1

j z, are ≻ z and one is ≺ z or

(b) Two of the four points, T±1
j z, are ≻ z and two are incomparable with z.

Proof: We show that case (b) pertains to the diagonals, |z1| = |z2|, and the axes, z1 = 0 and z2 = 0.
To begin, if z1 = 0 then T±1

2 z = z and so z is comparable to neither T2z nor T−1
2 z. As

T±1
1

(
0
z2

)
=

(
±2z2 modn

z2

)
,

to show that T±1
1 z ≻ z we need only confirm that | ± 2z2 modn| > 0. The latter follows from

0 < |z2| < n/2. The other axis is handled in just the same way.
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Now on the diagonal z1 = z2 = a 6= 0 we find

T±1
1

(
a
a

)
=

(
(1± 2)a modn

a

)
and T±1

2

(
a
a

)
=

(
a

(1± 2)a modn

)
.

From these we see that z is not comparable to T−1
i z while Tiz ≻ z if |3a modn| > |a|. To confirm

|3a modn| > |a| we note that (a, a) ∈ Dn iff n ≥ 4a+1. Now, if 3a ≤ n/2 then 3a modn = 3a and
cleary |3a| > |a|. Conversely, if 3a > n/2 then 3a modn = 3a − n. Now, from n ≥ 4a + 1 comes
n− 3a > a and so |3a− n| > |a|.

Similarly, on the antidiagonal, z1 = a, z2 = −a 6= 0 we find

T±1
1

(
a
−a

)
=

(
(1∓ 2)a modn

−a

)
and T±1

2

(
a
−a

)
=

(
a

(2∓ 1)a modn

)
.

From these we see that z is not comparable to Tiz while T−1
i z ≻ z if |3a modn| > |a|. As above,

this inequality holds for all (a, a) ∈ Dn.
We now leave the axes and diagonals and focus on the triangle tn ≡ {z ∈ Dn : z1 > z2 > 0}.

Now T−1
1 z ≺ z is equivalent to

|z1 − 2z2 modn| < |z1|, z ∈ tn.

We note that z1 − z2 = j > 0 and find

|z1 − 2z2| ≤ |z1 − z2|+ |z2| = j + z1 − j = z1 = |z1|,
with equality iff z2 = 0. As z2 > 0 and |z1| < n/2 we have shown that |z1−2z2 modn| = |z1−2z2| <
|z1|, i.e.,T−1

1 z ≺ z for z ∈ tn.
Next, we note that T1z ≻ z is equivalent to |z1 + 2z2 modn| > |z1|. If z1 + 2z2 ≤ n/2 then

(z1 + 2z2) modn = z1 + 2z2 > z1 as z2 > 0. Conversely, if z1 + 2z2 > n/2 then (z1 + 2z2) modn =
z1 + 2z2 − n. As z ∈ tn it follows that n > 2z1 + 2z2 and hence n− z1 − 2z2 > z1.

Next, T2z ≻ z is equivalent to |2z1+ z2 modn| > |z2|. If 2z1 + z2 ≤ n/2 then (2z1 + z2) modn =
2z1 + z2 > z2 as z1 > 0. Conversely, if 2z1 + z2 > n/2 then (2z1 + z2) modn = 2z1 + z2 − n. From
n > 2z1 + 2z2 we deduce the required n− 2z1 − z2 > z2.

Finally, T−1
2 z ≻ z is equivalent to |z2 − 2z1 modn| > |z2|. If z2 − 2z1 ≥ −n/2 then (z2 −

2z1) modn = z2 − 2z1. Now from z1 > z2 we deduce 2z1 > 2z2 and 2z1 − z2 > z2 and finally
|z2 − 2z1| > |z2|. Conversely, if z2 − 2z1 < −n/2 then (z2 − 2z1) modn = n + z2 − 2z1. Now
n+ z2 − 2z1 > z2 follows from n > 2z1. End of Proof.

With this we now have all we need to prove that the Margulis Construction is expanding.

Proposition 16.19. λ(Γn) ≤ 7.3 for every positive integer n.

Proof: We begin with the numerator of the Rayleigh quotient

〈AΓnu, u〉 = 2
∑

z∈Z2
n

u(z){u(T1z) + u(T1z + e1) + u(T2z) + u(T2z + e2)}. (16.25)

for u ⊥ 1. By Parseval’s Theorem, Prop. 15.14, and Prop. 16.17 we may write the first half of
(16.25) as ∑

z∈Z2
n

u(z){u(T1z) + u(T1z + e1)} =
1

n2

∑

z∈Z2
n

û(z)û(T−1
2 z)(1 + ωz1n ),
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where ωn = exp(2πi/n) and we have used T−T
1 = T−1

2 and T−1
1 e1 = e1. Applying this same argument

to the remaining two terms of (16.25) and noting |1 + ωkn| = 2| cos(πk/n)| we find

n2〈AΓnu, u〉 ≤
∑

z∈Z2
n

4|û(z)|{|û(T−1
2 z)|| cos(z1π/n)|+ |û(T−1

1 z)|| cos(z2π/n)|}. (16.26)

We also note that u ⊥ 1 translates into

û(0) = 〈u, χ0〉 = uT1 = 0. (16.27)

Regarding the denominator of the Rayleigh quotient we invoke Parseval’s Theorem again to arrive
at

n2〈u, u〉 = 〈û, û〉 =
∑

z∈Z2
n

|û(z)|2. (16.28)

In contrasting (16.26) and (16.28) one is led to the hope that we may perhaps factor a term like
|û(z)|2 out of the former. This hope is realized with the help of the elementary inequality

2ab ≤ a2c+ b2/c, (16.29)

that holds for any nonnegative a, b, and c. This inequality permits great flexibility in the choice of
c and, given the complexity of (16.26), we will choose c to in fact vary with z and its action under
T−1
1 and T−1

2 in a manor that exploits the comparisons established in Prop. 16.18. In particular,
we will see that

c(z, z′) =





5/4 if z ≻ z′,

4/5 if z ≺ z′,

1 otherwise,

suffices for our purposes. To see this we note that c(z, z′)c(z′, z) = 1 for every z, z′ ∈ Z2
n permits us

to express (16.29) as
2|û(z)||û(z′)| ≤ c(z, z′)|û(z)|2 + c(z′, z)|û(z′)|2.

Using this in (16.26) then brings

n2〈AΓnu, u〉 ≤2
∑

z∈Z2
n

| cos(πz1/n)|{c(z, T−1
2 z)|û(z)|2 + c(T−1

2 z, z)|û(T−1
2 z)|2}

+ 2
∑

z∈Z2
n

| cos(πz2/n)|{c(z, T−1
1 z)|û(z)|2 + c(T−1

1 z, z)|û(T−1
1 z)|2}.

(16.30)

We can indeed factor out a common |û(z)|2 in the first sum on noting that the change of variable
y = T−1

2 z leaves y1 = z1. In particular, this allows us to conclude that
∑

z∈Z2
n

| cos(πz1/n)|c(T−1
2 z, z)|û(T−1

2 z)|2 =
∑

z∈Z2
n

| cos(πz1/n)|c(z, T2z)|û(z)|2.

The remaining sum in (16.30) is handled by noting y = T−1
1 z leaves y2 = z2. Hence, from (16.30)

we arrive at

n2〈AΓnu, u〉 ≤ 2
∑

z∈Z2
n

|û(z)|2| cos(πz1/n)|{c(z, T2z) + c(z, T−1
2 z)}

+ 2
∑

z∈Z2
n

|û(z)|2| cos(πz2/n)|{c(z, T1z) + c(z, T−1
1 z)}.

(16.31)
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Contrasting this with (16.28), and using (16.27), our full result will follow from the pointwise bound

| cos(πz1/n)|{c(z, T2z) + c(z, T−1
2 z)} + | cos(πz2/n)|{c(z, T1z) + c(z, T−1

1 z)} ≤ 73

20
(16.32)

for every nonzero z ∈ Z2
n.

We split the proof (16.32) into two domains. For z outside Dn we overestimate all the c terms
by 5/4 and verify

| cos(πz1/n)|+ | cos(πz2/n)| ≤
√
2 ≤ 73

50
,

which implies the necessary inequality for such z. We suppose that z1 ≥ 0 and z2 ≥ 0. The
other cases follow similarly. Since z2 7→ cos(πz2/n) is decreasing and since we are outside Dn, this
expression is maximized on the boundary, z2 = n/2− z1, where cos(πz2/n) = sin(πz1/n). Hence,

cos(πz1/n) + cos(πz2/n) = cos(πz1/n) + sin(πz1/n) ≤
√
2,

as needed. Conversely, when z ∈ Dn we bound eash cosine by 1 and prove

c(z, T2z) + c(z, T−1
2 z) + c(z, T1z) + c(z, T−1

1 z) ≤ 73

20
(16.33)

Ths will follow from the previous proposition. In case (a), the left-hand side of Eq. (16.33) is
3/(5/4) + 5/4 = 73/20, while in case (b) it is 2/(5/4) + 2 = 72/20. End of Proof.

16.6. Notes and Exercises

For more see Biggs (1994) and Harary (1969). Results on girth and expansion are due to Margulis.
For girth we follow the exposition of G. Davidoff and Valette (2003). For expanders we follow the
exposition of Hoory and Wigderson (2006).

1. Show that these two trees are isospectral but not isomorphic.

2. Suppose that T = (V,E) is a tree, that degT (v) is the degree of vertex v and that dT (u, v) is
the number of edges traversed on the unique path from u to v. Prove that the Wiener Polarity
can be written

WP (T ) = |{{u, v} : dT (u, v) = 3}| =
∑

uv∈E
(degT (u)− 1)(degT (v)− 1). (16.34)

Hint: dT (u, v) = 3 iff ∃ x and y in V such that ux and vy lie in E. The number of such points
is precisely that on the right side of (16.34).

3. (a) Show that ∑

v∈V
deg(v)2 =

∑

uv∈E
deg(u) + deg(v).

(b) Use part (a) and the previous exercise to show that

WP (T ) = Z2(T )− Z1(T ) + |E|
where Z1 and Z2 are the first and second Zagreb indices

Z1(T ) =
∑

v∈V
deg(v)2 and Z2(T ) =

∑

uv∈E
deg(u) deg(v).
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(c) For trees with a common degree sequence it follows that to maximize WP is to maximize
Z2. Next show that

dTAd = 2Z2(A).

so we should choose the A so that Ad is monotone nondecreasing. For example, given d =
(3, 3, 2, 1, 1, 1, 1) note that both trees have this sequence.

1

2 3 4

5 6 7

3

1

6

2

4 5 7

Figure 16.6 Two graphs with degree sequence d = (3, 3, 2, 1, 1, 1, 1).

Compute the respective Z2 and the respective adjacency matrices and argue in terms of “similar
ordering” why the second graph has a larger Wiener polarity.

(d) Given a degree sequence d argue that there exists an adjacency matrix Â such that Âd is

nonincreasing and then prove that Z2(A) ≤ Z2(Â) for any A with the same degree sequence.

4. Show that if T is a tree on n vertices with distance matrix Dn then

det(Dn) = (−1)n−1(n− 1)2n−2. (16.35)

Proof: If node n is a leaf then

Dn =




0 d1,2 · · · d1,n−1 1 + d1,n−1

d1,2 0 · · · d2,n−1 1 + d2,n−1

...
...

...
...

d1,n−1 d2,n−1 · · · 0 1
1 + d1,n−1 1 + d2,n−1 · · · 1 0




now subtracting column n− 1 from column n and subtracting row n− 1 from row n brings

D′
n =




0 d1,2 · · · d1,n−1 1
d1,2 0 · · · d2,n−1 1
...

...
...

...
d1,n−1 d2,n−1 · · · 0 1
1 1 · · · 1 −2




323



We now imagine pruning the nth vertex from Γn and so arriving at the smaller tree Γn−1. The
distance matrix for Γn−1 is precisely the upper (n − 1)-by-(n− 1) block of D′

n. Returning to
our previous argument, if node n− 1 is a leaf of Γn−1 then we may reduce D′

n to

D′′
n =




0 d1,2 · · · d1,n−2 1 1
d1,2 0 · · · d2,n−2 1 1
...

...
...

...
...

d1,n−2 d2,n−2 · · · 0 1 1
1 1 · · · 1 −2 0
1 1 · · · 1 0 −2




Continuing in this fashion brings

D∗
n =




0 1 · · · 1 1
1 −2 0 · · · 0

1 0 −2
. . . 0

...
...

. . .
. . .

...
1 0 · · · 0 −2




Expanding along the last column then reveals

det(Dn) = (−1)n−12n−2 − 2 det(Dn−1), det(D1) = 0, det(D2) = −1

from which we deduce (16.35). End of Proof.

5. Use the Power Method to prove that the random walk converges to the uniform distribution.
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Index

affine dimension, 73
affine interior, 73
affine span, 73
algebraic multiplicity, 191
Argument Principle, 181
autocovariance, 98, 163
autoregressive model, 98

back substitution, 33
basis, 52
bijection, 251
Birkhoff’s Theorem, 70

Cauchy’s Theorem, 173
Cauchy–Riemann equations, 153
Cayley graph, 246

Dih3, 246
Dih4, 246
SIco, 249
STet, 248

Cayley–Hamilton Theorem, 201
centralizer, 260
character table

Alt3, 274
Per3, 274

Chebyshev polynomials, 91
Cholesky Factorization, 96, 98, 100, 106
class function, 274
closed set, 73
column space, 50
companion matrix, 207
compliance, 49
cone, 69
conjugacy class, 252

Altn, 260
Pern, 253

conjugate transpose, 148
convex combination, 70
convex function, 49, 225

convex set, 70
convolution, 128, 164, 293
coset, 257
covariance, 98
covariance matrix, 95
cross product, 17, 243
cycle (permutation), 249
cycle type, 252

degree, 299
determinant, 37, 46
diagonalize, 192
dimension, 56
direct sum, 64
discrete Fourier Transform, 162
doubly stochastic, 70

eigennilpotent, 189
eigenprojection, 189
eigenspace, 185
eigenvalue, 185
eigenvector, 185
expander constant, 311
extreme point, 71

Farkas Alternative, 69
Fredholm Alternative, 69
free variable, 54
Fundamental Theorem of Algebra, 182

Gauss-Jordan method, 34
Gaussian Elimination, 33
generalized eigenspace, 191
generalized eigenvector, 191
generating function, 89
geometric multiplicity, 191
geometric series, 162, 166, 185
Gram–Schmidt Procedure, 84
Gram-Charlier Expansion, 105
Green’s Theorem, 171
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group, 242
Alt3, 250
Alt4, 251
Dih3, 245
Dih4, 246
GLn, 254
On, 242
PGL2, 257
PSL2, 257
Per3, 250
SIco, 248
SLn, 254
SOn, 242
STet, Tet, 247
free, 254
index, 258
invariant subspace, 270
quotient, 257
symplectic, 267

half space, 71
harmonic function, 168
Hermite polynomials, 104
Hermite Reduction, 94
Heun’s Method, 131
homomorphism, 251
Hooke’s Law, 31
hyperplane, 71

identity matrix, 14
incidence matrix, 20, 302
inequality

Cauchy–Schwarz, 3
triangle, 17

inner product, 1, 87
interlace (eigenvalues), 230, 303
invariant subspace, 68
inverse, 14
invertible, 37
isomorphism, 250

Jordan Block, 158
Jordan block, 59
Jordan index, 299

Kirchhoff’s Current Law, 21
Klein 4-group, 267

Lagrange’s Theorem, 258
least upper bound, 12
Legendre polynomials, 87, 104
Levinson’s Algorithm, 100
Liapunov Equation, 226
linear independence, 52
linear independence mod, 58
LU decomposition, 35

Möbius Transformation, 256
Mathematical Induction, 11
matrix exponential, 125
mod, 255

Newton’s Identities, 207
nilpotent, 139, 189
nilpotent matrix, 57
noninvertible, 37
nonsingular, 37
norm

matrix
Frobenius, 5
max, 13

vector
complex, 148
real, 2

normal matrix, 206
null space, 51

Ohm’s law, 21
orbit, 261
orthogonal

vectors, 2
orthogonal matrix, 85
outer product, 17

Parseval’s Theorem, 168, 293
patterns, 264
permutation matrix, 70
Perron’s Theorem, 204
persymmetry, 100
pivot, 53
pivot column, 53
pivot row, 53
pivot variable, 54
pivots, 37
polarization formula, 17
pole, 127
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polyhedron, 71, 78
positive definite, 78
positive definite matrix, 43
projection, 79
pseudo-inverse, 43, 112

QR method, 196

random walk, 167
rank, 56
rational function, 150
recurrence relation, 101
reflection matrix, 17, 243
resolvent, 169, 173, 185
resolvent identities, 186
resonant frequency, 133
right regular representation, 270
Rouché’s Theorem, 181

Schur form, 195
Schur’s Lemma, 272
semisimple matrix, 192
similar, 58, 159
similarity transform, 159
similarity transformation, 58, 68
singular, 37
singular matrix, 41
stabilizer, 261
stable mechanical system, 41
stationary process, 98
steady state solution, 136
subspace, 51
supremum, 13

Toeplitz matrix, 99
trace, 4
transfer function, 143
transpose, 1
triangle

eigenvalues and vectors, 229
geometric incidence matrix, 46
inequality, 17
null space, 46
symmetry group, 245

unitary, 213
unitary representation, 271
unstable mode, 41

Wheatstone Bridge, 29
Wiener Filter, 105
Wiener polarity, 317

Yule–Walker equations, 99

Zagreb indices, 317

329


	Linear Algebra in Situ
	CAAM_335_S18
	Linear Algebra in Situ
	CAAM_335_F17




