CAAM 335, Fall 2021, Homework 10

This is a *pledged* problem set, so please read the following instructions carefully.

- No time limit.
- Please upload solutions to Canvas by December 14, 2021.
- This is an open book exam. You are **only** allowed to use the lecture notes, Steve Cox's book (*Linear Algebra in situ*), homework solutions, and recitation session notes.
- You cannot use any material from previous semesters or the internet.
- No use of MATLAB or other computing software is allowed.
- This is an individual assignment. You may **only** discuss the content of this exam with the instructor if you require clarifications.
- Please show all of your work, with the same amount of detail as homework assignments.
- Indicate your compliance with the instructions above by writing and signing Rice's honor pledge on the first page of your solutions:

On my honor, I have neither given nor received any unauthorized aid on this assignment.

Problem 1: (5+5=10 pts)

- (a) Prove the following statement: if $A^T A x = 0$, then A x = 0, in two different ways:
 - (i) Using the Fundamental Theorem of Linear Algebra (FTLA).
 - (ii) Without using FTLA.

(b) Compute the four fundamental subspaces of $\mathbf{A} = \begin{pmatrix} 3 & 1 \\ 1 & -3 \end{pmatrix}$ and sketch them.

Problem 2: (5+5+5+5=20 pts) Let $A \in \mathbb{R}^{n \times n}$ satisfy $A = A^T$. Define the following function (for $x \neq 0$)

$$r(\boldsymbol{x}) = \frac{\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^T \boldsymbol{x}}.$$

- (a) Assume that $\mathbf{A} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ is a 2 × 2 matrix. Define the vector of independent variables $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$. Derive a formula for the function $r(\mathbf{x})$ in terms of a, b, c, x_1 , and x_2 .
- (b) Using your formula from part (a), compute $\nabla r = \begin{pmatrix} \frac{\partial r}{\partial x_1} \\ \frac{\partial r}{\partial x_2} \end{pmatrix}$.
- (c) From the result in part (b), how do eigenvalues and eigenvectors of **A** relate to $r(\mathbf{x})$?
- (d) Assume **A** is an $n \times n$ symmetric matrix. Using the diagonalization of **A**, show that $\lambda_{\min} \leq r(\mathbf{x}) \leq \lambda_{\max}$, where λ_{\min} and λ_{\max} are the smallest and largest eigenvalues of **A** respectively.

Problem 3: (5+5+5=15 pts) Consider the matrix $\mathbf{A} = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}$.

- (a) Compute the diagonalization of $\mathbf{A} = \mathbf{Q}\mathbf{D}\mathbf{Q}^T$. Note that the matrix $\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & j \end{pmatrix}$ has determinant equal to a(ej hf) b(dj fg) + c(dh eg).
- (b) From the diagonalization, compute a factorization of \boldsymbol{A} that takes the form $\boldsymbol{B}\boldsymbol{B}^T$.
- (c) Define the function $\|\mathbf{x}\|_{\mathbf{A}} = (\mathbf{x}^T \mathbf{A} \mathbf{x})^{1/2}$. Is this function a norm for the matrix \mathbf{A} defined above? Prove or disprove.

Problem 4: (5+5+5=20 pts) Consider the matrix $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$.

(a) Compute the SVD of **A**.

- (b) Compute the SVD of A^T .
- (c) Using your work in computing the SVD, what are orthonormal bases for the four fundamental subspaces of *A*?
- (d) Use the SVD to compute a solution to $\min_{\boldsymbol{x}} \|\boldsymbol{A}^T \boldsymbol{x} \boldsymbol{b}\|_2^2$ for $\boldsymbol{b} = \begin{pmatrix} 6\\1\\10 \end{pmatrix}$. Is this solution unique? Explain why or why not.

Problem 5: (5+5+5=15 pts) The exponential of a matrix can be defined using the using the Taylor expansion of the exponential function:

$$e^{\mathbf{A}} = \sum_{k=0}^{\infty} \frac{\mathbf{A}^{k}}{k!}$$

= $\mathbf{I} + \mathbf{A} + \frac{\mathbf{A}^{2}}{2!} + \frac{\mathbf{A}^{3}}{3!} + \dots + \frac{\mathbf{A}^{k}}{k!} + \dots$
= $\mathbf{I} + \mathbf{A} + \frac{\mathbf{A} \cdot \mathbf{A}}{2 \cdot 1} + \frac{\mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A}}{3 \cdot 2 \cdot 1} + \dots + \frac{\overbrace{\mathbf{A} \cdot \mathbf{A} \cdot \dots \cdot \mathbf{A}}^{\text{k times}}}{k \cdot (k-1) \cdot \dots \cdot 2 \cdot 1} + \dots$

(a) Suppose
$$\boldsymbol{A} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$
. What is $e^{\boldsymbol{A}}$?

(b) Suppose $\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1}$, i.e. it can be diagonalized. What is $e^{\mathbf{A}}$ in terms of \mathbf{V} , \mathbf{D} , and \mathbf{V}^{-1} ? Feel free to factor matrices out of infinite sums at will! Use this result to compute the matrix exponential of $\mathbf{A} = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}$, which you should have diagonalized in problem 3.

(c) If
$$\mathbf{A}^2 = \mathbf{A}$$
, show that $e^{t\mathbf{A}} = \mathbf{I} + \mathbf{A}(e^t - 1)$.