CAAM 335, Fall 2021, Homework 4 - Solutions

Problem 1: (30 points)

(a) Compute, by hand, the LU-decomposition of

I 0 2
A=|-1 -1 -3
-3 -2 -9

Show all steps of the computation. What are L and U?

(b) Suppose you have computed the LU-decompositon A = LU of A. Describe how you can use
it to solve ATx = f.

(c) Let A be the matrix in part (a). Use your procedure in (b) to solve ATx = f, where f =
(1,2,1)7T.

Solution

a) We express Gaussian Elimination using Matrix-Matrix-multiplications

100 1 0 2 1 0 2
110 ~1 -1 =3 |=[0 -1 -1
30 1 3 -2 -9 0 -2 -3
;Zl ;74 :ZA
1 00 1 0 2 1 0 2
0 10 0 -1 -1 |=|0 -1 -1
0 -2 1 0 -2 -3 0 0 -1

L —L,A —LLiA=U

The inverses of L and L; can be easily computed:

1 00 1 00
Li'=(-t10}, L;y)=1010
-3 0 1 0 2 1
We have
Il A=U
Hence

LA=L,'U, and A=L;'L;'U.



10 2 100 100 10 2
2 -1 3= -1120 010 0 -1 -1
4 1 8 -3 0 1 021 0 0 —1
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100 10 2

= -1 10 0 —1 —1

-3 21 0 0 -1

L =

b) If A= LU, then AT = (LU)" = UTL" The system A”x = f is equivalent to UT LTx = f. If

c)

we introduce the variable y = LT x, then y solves
uly=rt.

Since U is upper triangular, U is lower triangular and we can solve U”y = f using forward
substitution.

If y is computed, then the solution x of Ax = f can be computed by solving
LTx= y.

Since L is lower triangular, LT is upper triangular and we can solve L’ x = y using backward
substitution.

First, we solve

1 0 O Vi 1
0O -1 0 wl=1 2
2 -1 -1 3 1
(. ~~ o e, p”’ N, e’
=uT =y =f
This gives y1 =1,y = =2, y3 =3.
Then we solve
1 -1 -3 X1 1
0 1 2 X2 | = -2
0O o0 1 X3 3
N ~~ N~
=LT =x =y
This gives x3 =3, xp = —8, x1 = 2.



Problem 2: (10+10 = 20 points)

An “unstable swing” is made up of the compressible bars labeled 1, 2, and 3 in the figures above.
This swing is unstable, as we concluded in class with a similar example. In this problem, we make
two attempts to stabilize the swing. (The gray regions denote rigid walls.)

(a) Add a vertical bar to arrive at the configuration shown in the left figure above. Compute the
matrix A that relates displacements to elongations, and find all x’s such that Ax = 0. Is this
configuration stable?

(b) Instead, add a horizontal bar to arrive at the figure on the right. Compute A and then compute
all x such that Ax = 0. Is this configuration stable?

Solution
(a)
€1 =x2 O 1 0 O
€y =X3—X] . . -1 0 1 0
s — s or e = Ax where A = 0 00 I
eqs = —Xx4 0O 0 0 -1
Row reduction (interchange rows 1 and 2; then add row 3 to row 4)
O 1 0 O -1 01 0
-1 01 O 0 1 00
A=1 o 00 1|70 0o 1|7
0 0 0 -1 0 00O

Solve ref(A)x = 0 to find that
x:<x3>07x370)T7 X3 ER,

1.e.,
X3

N(A): tx3€eR



(b)

el =x O 1 0 O
€ =X3—X] _ -1 0 1 0
s =4 or e = Ax where A = 0 0 0 1
eq = —Xx3 0O 0 -1 0
Row reduction (interchange rows 1 and 2; interchange rows 3 and 4)
0O 1 0 O -1 0 1 O
-1 0 1 O 0 1 0
A=10o 0 0 1] 7|0 o -1 of =T
0O 0 —-1 0 0 0 0 1
Solve ref(A)x = 0 to find that
x = (0,0,0,0)7,
1.e.,
0
0
0

Problem 3: (5+5+5 = 15 points)
Prove or disprove that these are subspaces of R3.

1. Wy = {(al,az,ag) € ]R3 ra; =2a3 and ar = —7a3}.
2. Wo = {(al,az,ag) S ]R3 :2a; —4ar +S5a3 = 3}.

3. W3 = {(al,az,ag) € R3: 2a1 —4az + 5a3 = O}.
Solution

(a) Any vector in W takes the form: o (2,—7,1) for some o € R. For closure under addition,
we take oy (2,—7,1), 02 (2,—7,1) € W and look at:

o (2,-7,1)+0n(2,-7,1)= (0 +02) (2,=7,1) € Wj.
For closure under scalar multiplication, take p € R and consider:
Bay (2,-7,1) = (Poy) (2,—7,1) € Wy.
So W is a subspace.

(b) W5 is not a subspace because the zero vector does not satisfy 2a; —4as + 5az = 3.



(c) For closure under addition, consider (ay,a»,a3), (b1,bz,b3) € W3. To check that their sum is
in Ws:

0=0+0=2a; —4ar+5a3+2by —4by +5b3 =2(a; + b1) —4(ar + b2) + 5(az + b3).
For closure under scalar multiplication, take 3 € R and consider:

0= B0 = B(2a; —4az + 5a3) = 2(Ba1) — 4(Baz) +5(Bas)-
So Wz is a subspace.
Problem 4 (5+5+10=20 points) We wish to show that N(A) = N(AT A) regardless of A.
(a) For arbitrary A show that N(A) C N(ATA), i.e., that if Ax = 0 then AT Ax = 0.
(b) For arbitrary A show that N(ATA) C N(A), i.e., that if AT Ax = 0 then Ax = 0.

(c) Let K € R™*™ be a diagonal matrix with positive diagonal entries and let A € R™*". Show
that N(A) = N(ATKA). (Hint: ATKA = ATA. What is A?)

Solution

(a) Let x € N(A), that is let x satisfy Ax = 0. Then ATAx = AT0 = 0, which means that x €
N(ATA).

(b) Let x € N(ATA), that is let x satisfy AT Ax = 0. Then x ATAx = xT0 = 0. If we set y = Ax,
then 0 = xTATAx = yTy =¥, y?. Consequently, 0 = y = Ax, which means that x € N(A).

1/2 : 1/2) Then

(c) Define K'/2 = diag(k,
ATKA = ATK'PK'24 = (K'2A)TK'/2A = AT A,
where A = K1/2A.
If we apply parts 2 and 3 with A replaced by A, then
N(ATKA) = N(ATA) = N(A) = N(K'/A).

If x € N(A), then Ax = 0, which implies K'/2Ax = 0, which means that x € N(K'/2A). On the
other hand, if x € N(Kl/zA), then K'/2Ax = 0. Since k}/27 ... kl/2 > (, this implies Ax = 0,
which means that x € N(A). Thus we have

N(ATKA) = N(ATA) = N(A) = N(K'/?A) = N(A).



