CAAM 335, Fall 2021, Homework 4 - Solutions

Problem 1: (30 points)

(a) Compute, by hand, the LU-decomposition of

$$A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & -1 & -3 \\ -3 & -2 & -9 \end{pmatrix}.$$

Show all steps of the computation. What are L and U?

- (b) Suppose you have computed the LU-decompositon A = LU of A. Describe how you can use it to solve $A^T x = f$.
- (c) Let A be the matrix in part (a). Use your procedure in (b) to solve $A^T x = f$, where $f = (1,2,1)^T$.

Solution

a) We express Gaussian Elimination using Matrix-Matrix-multiplications

$$\underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}}_{=L_1} \begin{pmatrix} 1 & 0 & 2 \\ -1 & -1 & -3 \\ -3 & -2 & -9 \end{pmatrix}}_{=L_1A} = \underbrace{\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -1 \\ 0 & -2 & -3 \end{pmatrix}}_{=L_1A} = \underbrace{\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -1 \\ 0 & -2 & -3 \end{pmatrix}}_{=L_2L_1A=U}$$

The inverses of L_1 and L_2 can be easily computed:

$$L_1^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -3 & 0 & 1 \end{pmatrix}, \quad L_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}.$$

We have

$$L_2 L_1 A = U$$

Hence

$$L_1A = L_2^{-1}U$$
, and $A = L_1^{-1}L_2^{-1}U$.

$$\underbrace{\begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}}_{=A} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -3 & 0 & 1 \end{pmatrix}}_{=L_1^{-1}} \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}}_{=L_2^{-1}} \underbrace{\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix}}_{=L_2^{-1}}_{=U}$$

b) If A = LU, then $A^T = (LU)^T = U^T L^T$ The system $A^T x = f$ is equivalent to $U^T L^T x = f$. If we introduce the variable $y = L^T x$, then y solves

$$U^T y = f.$$

Since U is upper triangular, U^T is lower triangular and we can solve $U^T y = f$ using forward substitution.

If *y* is computed, then the solution *x* of Ax = f can be computed by solving

 $L^T x = y.$

Since *L* is lower triangular, L^T is upper triangular and we can solve $L^T x = y$ using backward substitution.

c) First, we solve

$$\underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 2 & -1 & -1 \end{pmatrix}}_{=U^T} \underbrace{\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}}_{=y} = \underbrace{\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}}_{=f}$$

This gives $y_1 = 1$, $y_2 = -2$, $y_3 = 3$.

Then we solve

$$\underbrace{\begin{pmatrix} 1 & -1 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}}_{=L^T} \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}_{=x} = \underbrace{\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}}_{=y}.$$

This gives $x_3 = 3$, $x_2 = -8$, $x_1 = 2$.

Problem 2: (10+10 = 20 points)

An "unstable swing" is made up of the compressible bars labeled 1, 2, and 3 in the figures above. This swing is unstable, as we concluded in class with a similar example. In this problem, we make two attempts to stabilize the swing. (The gray regions denote rigid walls.)

- (a) Add a vertical bar to arrive at the configuration shown in the left figure above. Compute the matrix A that relates displacements to elongations, and find all x's such that Ax = 0. Is this configuration stable?
- (b) Instead, add a horizontal bar to arrive at the figure on the right. Compute A and then compute all x such that Ax = 0. Is this configuration stable?

Solution

(a)

$$e_1 = x_2
e_2 = x_3 - x_1
e_3 = x_4
e_4 = -x_4$$
 or $e = Ax$ where $A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$

Row reduction (interchange rows 1 and 2; then add row 3 to row 4)

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix} \to \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \operatorname{ref}(A)$$

Solve ref(A)x = 0 to find that

$$x = (x_3, 0, x_3, 0)^T, \quad x_3 \in \mathbb{R},$$

i.e.,

$$N(A) = \left\{ \begin{pmatrix} x_3 \\ 0 \\ x_3 \\ 0 \end{pmatrix} : x_3 \in \mathbb{R} \right\}.$$

$$\begin{array}{l} e_1 &= x_2 \\ e_2 &= x_3 - x_1 \\ e_3 &= x_4 \\ e_4 &= -x_3 \end{array} \quad \text{or } e = Ax \text{ where } A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

Row reduction (interchange rows 1 and 2; interchange rows 3 and 4)

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix} \to \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{ref}(A)$$

Solve ref(A)x = 0 to find that

$$x = (0, 0, 0, 0)^T$$
,

i.e.,

$$N(A) = \left\{ \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix} \right\}.$$

Problem 3: (5+5+5 = 15 points)

Prove or disprove that these are subspaces of \mathbb{R}^3 .

- 1. $W_1 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = 2a_3 \text{ and } a_2 = -7a_3\}.$
- 2. $W_2 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : 2a_1 4a_2 + 5a_3 = 3\}.$

3.
$$W_3 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : 2a_1 - 4a_2 + 5a_3 = 0\}.$$

Solution

(a) Any vector in W_1 takes the form: $\alpha(2, -7, 1)$ for some $\alpha \in \mathbb{R}$. For closure under addition, we take $\alpha_1(2, -7, 1)$, $\alpha_2(2, -7, 1) \in W_1$ and look at:

$$\alpha_1(2,-7,1) + \alpha_2(2,-7,1) = (\alpha_1 + \alpha_2)(2,-7,1) \in W_1.$$

For closure under scalar multiplication, take $\beta \in \mathbb{R}$ and consider:

$$\beta \alpha_1 (2, -7, 1) = (\beta \alpha_1) (2, -7, 1) \in W_1.$$

So W_1 is a subspace.

(b) W_2 is not a subspace because the zero vector does not satisfy $2a_1 - 4a_2 + 5a_3 = 3$.

(c) For closure under addition, consider (a1, a2, a3), (b1, b2, b3) ∈ W3. To check that their sum is in W3:

$$0 = 0 + 0 = 2a_1 - 4a_2 + 5a_3 + 2b_1 - 4b_2 + 5b_3 = 2(a_1 + b_1) - 4(a_2 + b_2) + 5(a_3 + b_3).$$

For closure under scalar multiplication, take $\beta \in \mathbb{R}$ and consider:

$$0 = \beta 0 = \beta (2a_1 - 4a_2 + 5a_3) = 2(\beta a_1) - 4(\beta a_2) + 5(\beta a_3).$$

So W_3 is a subspace.

Problem 4 (5+5+10=20 points) We wish to show that $N(A) = N(A^T A)$ regardless of A.

- (a) For arbitrary A show that $N(A) \subset N(A^T A)$, i.e., that if Ax = 0 then $A^T Ax = 0$.
- (b) For arbitrary A show that $N(A^TA) \subset N(A)$, i.e., that if $A^TAx = 0$ then Ax = 0.
- (c) Let $K \in \mathbb{R}^{m \times m}$ be a diagonal matrix with positive diagonal entries and let $A \in \mathbb{R}^{m \times n}$. Show that $N(A) = N(A^T K A)$. (Hint: $A^T K A = \widetilde{A}^T \widetilde{A}$. What is \widetilde{A} ?)

Solution

- (a) Let $x \in N(A)$, that is let x satisfy Ax = 0. Then $A^T Ax = A^T 0 = 0$, which means that $x \in N(A^T A)$.
- (b) Let $x \in N(A^T A)$, that is let x satisfy $A^T A x = 0$. Then $x^T A^T A x = x^T 0 = 0$. If we set y = Ax, then $0 = x^T A^T A x = y^T y = \sum_{i=1}^m y_i^2$. Consequently, 0 = y = Ax, which means that $x \in N(A)$.
- (c) Define $K^{1/2} = \text{diag}(k_1^{1/2}, \dots, k_m^{1/2})$. Then

$$A^{T}KA = A^{T}K^{1/2}K^{1/2}A = (K^{1/2}A)^{T}K^{1/2}A = \widetilde{A}^{T}\widetilde{A},$$

where $\widetilde{A} = K^{1/2}A$.

If we apply parts 2 and 3 with A replaced by \widetilde{A} , then

$$N(A^{T}KA) = N(\widetilde{A}^{T}\widetilde{A}) = N(\widetilde{A}) = N(K^{1/2}A).$$

If $x \in N(A)$, then Ax = 0, which implies $K^{1/2}Ax = 0$, which means that $x \in N(K^{1/2}A)$. On the other hand, if $x \in N(K^{1/2}A)$, then $K^{1/2}Ax = 0$. Since $k_1^{1/2}, \ldots, k_m^{1/2} > 0$, this implies Ax = 0, which means that $x \in N(A)$. Thus we have

$$N(A^{T}KA) = N(\widetilde{A}^{T}\widetilde{A}) = N(\widetilde{A}) = N(K^{1/2}A) = N(A).$$