
CAAM 335, Fall 2021, Homework 6 - Solutions

Problem 1 (2+10=12 points) Let A ∈ R20×18 be the matrix corresponding to the truss (the tissue
model) in Figure 3.5 on Page 41 of the Linear Algebra in Situ notes. The matrix A is generated by
the MATLAB program fiber.m provided with this homework. Let K = diag(k1, . . . ,k20) ∈R20×20

be a diagonal matrix with positive diagonal entries k1, . . . ,k20 > 0.

(a) Use the MATLAB command null to compute a basis for N (A).

(b) Use N (A) = N (AT KA) and the Fundamental Theorem of Linear Algebra to decide for
which of the two right hand sides specified below the linear system

(AT KA)x = f

has a solution. (You can’t compute the solution, since you do not know K.)

• f = [-1;1;0;1;1;1;-1;0;0;0;1;0;-1;-1;0;-1;1;-1]

• f = [1;0;1;0;1;0;1;0;1;0;1;0;1;0;1;0;1;0]

(Note: Even if two vectors x,y satisfy xT y = 0 in exact arithmetic, MATLAB x’*y may
produce a nonzero number. Use abs(x’*y) < 1.e-12 to decide whether xT y = 0.)

Solution

% Generate A
fiber

% Compute a basis for N(A). Store the basis vectors as columns of B.
B = null(A);
fprintf(’A basis for N(A) \n’)
disp(B)

f = [-1;1;0;1;1;1;-1;0;0;0;1;0;-1;-1;0;-1;1;-1];

fprintf(’B’’*f = \n’)
fprintf(’ %12.6e \n’, B’*f)
if( any(abs(B’*f) > 1.e-12) )

fprintf(’ The right hand side is not orthogonal to N(A’’*K*A) \n’)
else

fprintf(’ The right hand side is orthogonal to N(A’’*K*A) \n’)
end

f = [1;0;1;0;1;0;1;0;1;0;1;0;1;0;1;0;1;0];

fprintf(’B’’*f = \n’)
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fprintf(’ %12.6e \n’, B’*f)
if( any(abs(B’*f) > 1.e-12) )

fprintf(’ The right hand side is not orthogonal to N(A’’*K*A) \n’)
else

fprintf(’ The right hand side is orthogonal to N(A’’*K*A) \n’)
end

Note, the computations below were done using Matlab Version ’ ’9.8.0.1396136 (R2020a) Update 3”.
The null command in other Matlab versions may compute a different basis for the null-space of A.

>> HW6_Problem2
A basis for N(A)

-0.0773 0.0016 -0.4341
0.0086 0.3969 -0.1920
-0.0773 0.0016 -0.4341
0.2079 0.2580 -0.0361
-0.0773 0.0016 -0.4341
0.4073 0.1192 0.1198
0.1220 -0.1372 -0.2782
0.0086 0.3969 -0.1920
0.1220 -0.1372 -0.2782
0.2079 0.2580 -0.0361
0.1220 -0.1372 -0.2782
0.4073 0.1192 0.1198
0.3213 -0.2761 -0.1223
0.0086 0.3969 -0.1920
0.3213 -0.2761 -0.1223
0.2079 0.2580 -0.0361
0.3213 -0.2761 -0.1223
0.4073 0.1192 0.1198

B’*f =
-4.163336e-17
6.938894e-17
-6.800116e-16
The right hand side is orthogonal to N(A’*K*A)

B’*f =
1.097996e+00
-1.235193e+00
-2.503738e+00
The right hand side is not orthogonal to N(A’*K*A)

The linear system (AT KA)x = f with the first right hand side has a solution, the linear systems
with the second right hand side does not have a solution.

Problem 2 (10 points) Let
(
(1,2,2,3)T ,(1,3,3,2)T) be a basis of the subspace M ⊂ R4. Find a
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basis for
M ⊥ =

{
x ∈ R4 : xT y = 0 for all y ∈M

}
.

Solution Define

A =


1 1
2 3
2 3
3 2


We have R (A) = M . By the Fundamental Theorem of Linear Algebra, M ⊥ = R (A)⊥ = N (AT ).

AT =

(
1 2 2 3
1 3 3 2

)
→
(

1 2 2 3
0 1 1 −1

)
= (AT )red


0
−1
1
0

 ,


−5
1
0
1


 is a basis for N (AT ).

Problem 3 (10+10=20 points)

(a) Let v1,v2, . . . ,vk−1,vk ∈ V be linearly independent.
Show that v1−v2,v2−v3, . . . ,vk−1−vk,vk, obtained by subtracting from each vector (except
the last one) the following vector, are linearly independent.

(b) Show that

span
(
v1,v2, . . . ,vk−1,vk

)
= span

(
v1−v2,v2−v3, . . . ,vk−1−vk,vk

)
.

Solution

(a) Consider

0 = α1(v1−v2)+α2(v2−v3)+ . . .αk−1(vk−1−vk)+αkvk

= α1v1 +(α2−α1)v2 +(α3−α2)v3 + . . .+(αk−αk−1)vk

Since v1,v2, . . . ,vk−1,vk ∈ V are linearly independent this implies

α1 = 0,
α2−α1 = 0,
α3−α2 = 0,

...
αk−αk−1 = 0.

Solving via forward substitution gives

α1 = 0, α2 = 0, α3 = 0, . . . , αk−1 = 0, αk = 0.
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(b) Consider

v = β1v1 +β2v2 +β3v3 + . . .+βk−1vk−1 +βkvk

We need to find α1,α2,α3, . . . ,αk such that

v = α1(v1−v2)+α2(v2−v3)+ . . .αk−1(vk−1−vk)+αkvk

= α1v1 +(α2−α1)v2 +(α3−α2)v3 + . . .+(αk−αk−1)vk.

Hence

α1 = β1,

α2−α1 = β2,

α3−α2 = β3,

...
αk−αk−1 = βk.

Solving via forward substitution gives

α1 = β1, α2 = β1+β2, α3 = β1+β2+β3, . . . , αk−1 = β1+ . . .+βk−1, αk = β1+ . . .+βk.

Solution

(a) (10 pts) Since any y ∈ P can be written as y = v1s+ v2t +w for some s, t ∈ R, we need to
determine s, t as the solution of

min
s, t ∈ R

‖v1s+ v2t +w− z‖2 (1)

This is a least squares problem

min
s, t ∈ R

∥∥∥∥(v1 | v2

)(s
t

)
−
(

z−w
)∥∥∥∥

2
(2)

which is of the form (3) with

A =
(

v1 | v2

)
∈ Rk×2, x =

(
s
t

)
∈ R2, b =

(
z−w

)
∈ Rk.

(b) (10 pts) If

v1 =

0
1
1

 ,v2 =

1
2
0

 ,w =

3
1
1

 ,z =

1
1
2

 ,
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then

A =

0 1
1 2
1 0

 ∈ R3×2, b =

−2
0
1

 ∈ R3.

The normal equaions are
AT Ax = AT b.

In this case,

AT A =

(
2 2
2 5

)
, AT b =

(
1
−2

)
.

We apply Gaussian Elimination to solve AT Ax = AT b:(
2 2 1
2 5 −2

)
→
(

2 2 1
0 3 −3

)
Thus x2 =−1 and x1 = 3/2.

The vector y ∈ P closest to z is

y =

0
1
1

 3
2
−

1
2
0

+

3
1
1

=

 2
1/2
5/2

 .

Problem 4 (10+10=20 points)

i. Let v1,v2,w be non-zero vectors in Rk, k ≥ 2, and consider the subset

P = {v1s+ v2t +w : s, t ∈ R}

of Rk which represents a plane in Rk.

Given a vector z ∈ Rk, we want to find a vector y in P that is closest to z in the ‖ · ‖2 norm.
This problem is a linear least squares problem

min
x ∈ Rn

‖Ax−b‖2. (3)

Carefully identify A, b, x.

ii. Let

v1 =

0
1
1

 ,v2 =

1
2
0

 ,w =

3
1
1

 ,z =

1
1
2

 .

– Set up and solve the linear least squares problem (3) for this case. What are A and b?
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– Solve this linear least squares problem using the normal equations. (Show all your
work!)

– What is the y ∈ P closest to z?

Solution

(i) (10 pts) Since any y ∈ P can be written as y = v1s+ v2t +w for some s, t ∈ R, we need to
determine s, t as the solution of

min
s, t ∈ R

‖v1s+ v2t +w− z‖2 (4)

This is a least squares problem

min
s, t ∈ R

∥∥∥∥(v1 | v2

)(s
t

)
−
(

z−w
)∥∥∥∥

2
(5)

which is of the form (3) with

A =
(

v1 | v2

)
∈ Rk×2, x =

(
s
t

)
∈ R2, b =

(
z−w

)
∈ Rk.

(ii) (10 pts) If

v1 =

0
1
1

 ,v2 =

1
2
0

 ,w =

3
1
1

 ,z =

1
1
2

 ,

then

A =

0 1
1 2
1 0

 ∈ R3×2, b =

−2
0
1

 ∈ R3.

The normal equaions are
AT Ax = AT b.

In this case,

AT A =

(
2 2
2 5

)
, AT b =

(
1
−2

)
.

We apply Gaussian Elimination to solve AT Ax = AT b:(
2 2 1
2 5 −2

)
→
(

2 2 1
0 3 −3

)
Thus x2 =−1 and x1 = 3/2.

The vector y ∈ P closest to z is

y =

0
1
1

 3
2
−

1
2
0

+

3
1
1

=

 2
1/2
5/2

 .
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