
CAAM 335, Fall 2021, Homework 9 - Solutions

Problem 1 (8+6+6=20 points) Let A ∈ Rn×n be invertible and b ∈ Rn. This question analyzes the
convergence of an iterative method to solve Ax = b.

Given a current iterate xold ∈ Rn, the new iterate xnew ∈ Rn is computed using

xnew = (I−αA)xold +αb, (1)

where α ∈ R is a parameter to be determined later. (For the next iteration one sets xold← xnew and
repeats, but we only need to consider the single iteration (1).)

(a) Let x∗ ∈ Rn denote the solution of Ax = b.

Show that the errors eold = xold− x∗, enew = xnew− x∗ obey the iteration

enew = (I−αA) eold. (2)

(b) Assume that
A =V ΛV−1, (3)

where V ∈Rn×n is invertible and Λ∈Rn×n is a diagonal matrix with positive diagonal entries
λ1, . . . ,λn > 0.

Define εold =V−1eold, εnew =V−1enew and derive a relation between εnew and εold similar to
(2) but with a diagonal matrix instead of (I−αA).

(c) In part (b) you have shown that (2) is equivalent to n scalar equations of the form

ε
new
j = d j ε

old
j , j = 1, . . .n, (4)

with scalars d j depending on α, . . . . What is d j?
Assume εold

j 6= 0. The new error is smaller than the old error if and only if

|d j|< 1. (5)

Find the largest interval of all α for with (5) holds for all j ∈ {1, . . . ,n}.

Parts (a)-(c) show that the iterative method (1) converges for any starting value if and only if α is
in the interval you have determined in (c).

Solution

(a) (7 pts)

enew = xnew− x∗ = (I−αA)xold +αb− x∗

= (I−αA)xold +αAx∗− x∗ = (I−αA)xold− (I−αA)x∗

= (I−αA)eold.
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(b) (7 pts) We have

enew = (I−αA)eold = (I−αV ΛV−1)eold = (VV−1−αV ΛV−1)eold

=V (I−αΛ)V−1eold.

Define εold =V−1eold, εnew =V−1enew, to get

ε
new = (I−αΛ) ε

old. (6)

Since (I−αΛ) is a diagonal matrix, (6) is equivalent to the n scalar iterations

ε
new
j = (1−αλ j) ε

old
j (7)

for j = 1, . . .n.

(c) (6 pts) d j = 1−αλ j and |1−αλ j|< 1, i.e., if and only if

−1 < 1−αλ j < 1.

The latter inequalities hold for all α ∈ R with (recall that λ1, . . . ,λn > 0)

α < 2/λ j and α > 0.

The previous inequalities are satisfied for all j ∈ {1, . . . ,n} if and only if

α ∈

(
0,

2
max j∈{1,...,n}λ j

)
.

Problem 2 (6+7+7= 20points) Let A be a matrix with eigenvalues λ1, . . . ,λn and corresponding
eigenvectors v1, . . . ,vn. Answer the following questions and justify your answer.

(a) What are the eigenvalues and eigenvectors of A+2I?

(b) Let T be invertible. What are the eigenvalues and eigenvectors of T−1AT ?

(c) Let A be invertible. What are the eigenvalues and eigenvectors of A−1?

Solution

(a) The eigenvalues of A+2I are λ1+2, . . . ,λn+2 with the corresponding eigenvectors v1, . . . ,vn.
This is true because (A+2I)v j = Av j +2v j = (λ j +2)v j for all j = 1, . . . ,n.

(b) The eigenvalues of T−1AT are λ1, . . . ,λn with the corresponding eigenvectors T−1v1, . . . ,T−1vn.
This is true because T−1AT (T−1v j) = T−1A(T T−1)v j = T−1Av j = λ jT−1v j for all j =
1, . . . ,n.
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(c) Because A is invertible all eigenvalues of A are non-zero.

The eigenvalues of A−1 are 1
λ1
, . . . , 1

λn
with the corresponding eigenvectors v1, . . . ,vn. This is

true because A−1v j =
1
λ j

A−1λ jv j =
1
λ j

A−1Av j =
1
λ j

v j for all j = 1, . . . ,n.

Problem 3 (10+10+10=30 points)

(a) Given a symmetric matrix A ∈Rn×n and a vector b ∈Rn consider the minimization problem

min
x ∈ Rn

1
2xT Ax+bT x. (8)

Use the diagonalization
A = QΛQT ,

where Λ = diag(λ1, . . . ,λn) ∈ Rn×n and Q ∈ Rn×n is orthogonal, to transform (8) into

min
z ∈ Rn

1
2zT

Λz+ cT z. (9)

How are x and z related? How are b and c related?

(b) Under what conditions on λ1, . . . ,λn does (9) have a unique solution? What is the solution?

(Hint: If g j : R→ R, j = 1, . . . ,n, are given functions, then the minimizer z = (z1, . . . ,zn) ∈
Rn of the function g(z) def

= ∑
n
j=1 g j(z j) is obtained by minimizing g j(z j), j = 1, . . . ,n, indi-

vidually.)

(c) Let (
2 −2
−2 5

)
︸ ︷︷ ︸

= A

=

(
1/
√

5 2/
√

5
−2/
√

5 1/
√

5

)
︸ ︷︷ ︸

= Q

(
6 0
0 1

)
︸ ︷︷ ︸
= Λ

(
1/
√

5 −2/
√

5
2/
√

5 1/
√

5

)
︸ ︷︷ ︸

= QT

and

b =

(
1
1

)
.

Compute the solution z of (9) and the solution x of (8).

Solution

(a) (10 pts) We insert A=QΛQT into 1
2xT Ax+bT x and use the orthogonality of Q (i.e., QQT = I)

to obtain

1
2xT Ax+bT x = 1

2 xT Q︸︷︷︸
= zT

Λ QT x︸︷︷︸
= z

+bT x = 1
2 xT Q︸︷︷︸
= zT

Λ QT x︸︷︷︸
= z

+ bT Q︸︷︷︸
= cT

QT x︸︷︷︸
= z

.

Thus the minimization problem (8) is equivalent to the minimization problem (9).
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(b) (10 pts) Since Λ is diagonal, we find that

1
2zT

Λz+ cT z =
n

∑
j=1

1
2λ jz2

j + c jz j

and the solution of

min
z ∈ Rn

1
2zT

Λz+ cT z = min
z1, . . . ,zn

n

∑
j=1

1
2λ jz2

j + c jz j

can be obtained by minimizing the scalar functions 1
2λ jz2

j + c jz j individually over z j.

The quadratic function z j 7→ 1
2λ jz2

j +c jz j does not have a minimum if λ j < 0. It has a unique
minimum if λ j > 0. If λ j = 0 and c j 6= 0 it does not have a minimum, and if λ j = 0 and
c j = 0 it is the zeros functions which attains its minimum at every z j ∈R. More formally, to
find the minimum of the scalar function f (z j) =

1
2λ jz2

j + c jz j we need

f ′(z j) = λ jz j + c j, f ′′(z j) = λ j.

If z j is a minimizer of f , then

f ′(z j) = λ jz j + c j = 0 and f ′′(z j) = λ j ≥ 0.

If λ j = 0, then f ′(z j) = λ jz j + c j = 0 only if c j = 0 and in this case every z j ∈ R is a
minimizer. If λ j > 0, then f ′(z j) = λ jz j + c j = 0 implies z j = −c j/λ j and this point is the
unique minimum.

Thus, (9) has a unique solution if and only if all eigenvalues of A are positive, λ1, . . . ,λn > 0,
and in this case the solution is given by

z j =−c j/λ j, j = 1, . . . ,n.

(c) (10 pts) If(
2 −2
−2 5

)
︸ ︷︷ ︸

= A

=

(
1/
√

5 2/
√

5
−2/
√

5 1/
√

5

)
︸ ︷︷ ︸

= Q

(
6 0
0 1

)
︸ ︷︷ ︸
= Λ

(
1/
√

5 −2/
√

5
2/
√

5 1/
√

5

)
︸ ︷︷ ︸

= QT

, b =

(
1
1

)
,

then

c = QT b =
1√
5

(
−1
3

)
.

The solution z of (9) is

z =
1√
5

(
1/6
−3

)
and the solution x of (8) is

x = Qz =
(

1/
√

5 2/
√

5
−2/
√

5 1/
√

5

)
1√
5

(
1/6
−3

)
=

1
5

(
1/6−6
−1/3−3

)
=

(
−7/6
−2/3

)
.
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Problem 4 (10+5+5+5+5=30 points)
Let

A =

(
1
√

2 1
1 −

√
2 1

)
, b =

(
2
1

)
.

(a) Diagonalize AT A, i.e., find an orthogonal matrix V ∈ R3×3 and a diagonal matrix Λ ∈ R3×3

such that
AT A =V ΛV T .

Hint: the eigenvalues of AT A are λ1 = λ2 = 4,λ3 = 0.

(b) Compute the SVD of A, i.e., find an orthogonal matrix U ∈ R2×2, and a diagonal matrix
Σ ∈ R2×3 such that

A =UΣV T .

(c) Compute

x† = A†b =
2

∑
j=1

1
σ j

uT
j b v j.

(d) Show that x = x† solves the least squares problem

min
x∈R3
‖Ax−b‖2 (10)

(e) Are there any other solutions to (10) besides x†? Why or why not?

Solution

(a) First, we compute AT A:

AT A =

2 0 2
0 4 0
2 0 2

 .

Given the hint, we must compute (for λ1,λ2)

N (AT A−4I) =N

−2 0 2
0 0 0
2 0 −2

= N

−2 0 2
0 0 0
0 0 0

= span


1

0
1

 ,

0
1
0

 ,

and (for λ3),

N (AT A−0I) =N

2 0 2
0 4 0
2 0 2

= N

2 0 2
0 4 0
0 0 0

= span


−1

0
1

 .

Note that this vector is already orthogonal to the basis vectors of the previous eigenspace.
Therefore, AT A can be diagonalized by the matrices

V =

1/
√

2 0 −1/
√

2
0 1 0

1/
√

2 0 1/
√

2

 , Λ =

4 0 0
0 4 0
0 0 0

 .
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(b) The singular values are
σ1 =

√
λ1 = 2, σ2 =

√
λ2 = 2.

The left singular vectors are chosen so that

AV =UΣ,

i.e.,

u1 =
1

σ1
Av1 =

1
2

A

1/
√

2
0

1/
√

2

=
1√
2

(
1
1

)
,

and

u2 =
1

σ2
Av2 =

1
2

A

0
1
0

=
1√
2

(
1
−1

)
.

Therefore,

U =
1√
2

(
1 1
1 −1

)
, Σ =

(
2 0 0
0 2 0

)
.

(c) This is

x† =
1
2

v1(uT
1 b)+

1
2

v2(uT
2 b)

=
1
2

1/
√

2
0

1/
√

2

 3√
2
+

1
2

0
1
0

 1√
2
=

3
4

1
0
1

+
1

2
√

2

0
1
0

=

 3/4
1/(2
√

2)
3/4

 .

(d) In order to be a solution to the least squares problem, it must hold that

AT (Ax†−b) = 0.

We first compute

Ax† =

(
2
1

)
= b.

Therefore, the residual Ax†−b is exactly zero, so it is a solution to the least squares problem.
Of course, this was to be expected, as this is an underdetermined least squares problem
involving a full-rank matrix.

(e) A has a non-trivial nullspace, i.e.,

N (A) = span

(−1/
√

2
0

1
√

2


︸ ︷︷ ︸

= v3

)
.

Thus, x†+αv3 will also be a solution to the least-squares problem, for any scalar α. x† is the
minimum-norm solution.
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Alternative Solution to get the SVD

(a) If we set B = AT and compute the SVD B = Ũ Σ̃Ṽ T , then A = BT = Ṽ Σ̃TŨT is the SVD of A.

Since

BT B =

(
4 0
0 4

)
its λ1 = λ2 = 4 is a double eigenvalue.

N (4I−BT B) = N
(

0 0
0 0

)
= span

{(
1
1

)
,

(
−1
1

)}
,

Hence

Σ̃ =

2 0
0 2
0 0

 , Ṽ =

(
1/
√

2 −1/
√

2
1/
√

2 1/
√

2

)
.

ũ1 =
1
2

Bv1 =

1/
√

2
0

1/
√

2

 ,

ũ2 =
1
2

Bv2 =

0
1
0

 .

This third column ũ3 is computed from

N (BT ) = N (

(
1
√

2 1
1 −

√
2 1

)
) = N (

(
1
√

2 1
0 −2

√
2 0

)
) = span

(−1/
√

2
0

1
√

2


︸ ︷︷ ︸

= ũ3

)
.

Hence

Ũ =

1/
√

2 0 −1/
√

2
0 1 0

1/
√

2 0 1/
√

2

 .

Note we could have also compute the following basis

N (4I−BT B) = N
(

0 0
0 0

)
= span

((1
0

)
,

(
0
1

))
,

which gives Ṽ = I and different columns ũ1, ũ2.
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