
MATH-UA.0252 (NYU Courant)

Spring 2019: Numerical Analysis
Assignment 5 (due May 3, 2019)

Please see the helpful hints at the bottom of the homework. Also, try the Matlab publish

command to print out your code along with the output. For all Matlab calculations and plots
you do, please turn in your code.

1. [Space of polynomials Pn, 1+2+2pts] Let Pn be the space of functions defined on
[−1, 1] that can be described by polynomials of degree less of equal to n with coefficients
in R. Pn is a linear space in the sense of linear algebra, in particular, for p, q ∈ Pn and
a ∈ R, also p+ q and ap are in Pn. Since the monomials {1, x, x2, . . . , xn} are a basis for
Pn, the dimension of that space is n+ 1.

(a) Show that for pairwise distinct points x0, x1, . . . , xn ∈ [−1, 1], the Lagrange polyno-
mials Lk(x) are in Pn, and that they are linearly independent, that is, for a linear
combination of the zero polynomial with Lagrange polynomials with coefficients αk,
i.e.,

n∑
k=0

αkLk(x) = 0 (the zero polynomial)

necessarily follows that α0 = α1 = . . . = αn = 0. Note that this implies that the
(n+ 1) Lagrange polynomials also form a basis of Pn.

(b) Since both the monomials and the Lagrange polynomials are a basis of Pn, each p ∈ Pn

can be written as linear combination of monomials as well as Lagrange polynomials,
i.e.,

p(x) =
n∑

k=0

αkLk(x) =
n∑

k=0

βkx
k, (1)

with appropriate coefficients αk, βk ∈ R. As you know from basic matrix theory, there
exists a basis transformation matrix that converts the coefficients α = (α0, . . . , αn)

T

to the coefficients β = (β0, . . . , βn)
T . Show that this basis transformation matrix is

given by the so-called Vandermonde matrix V ∈ Rn+1×n+1 given by

V =


1 x0 x20 · · · xn−10 xn0
1 x1 x21 · · · xn−11 xn1
...

...
...

. . .
...

...
1 xn x2n · · · xn−1n xnn

 ,

i.e., the relation between α and β in (1) is given by α = V β. An easy way to see
this is to choose appropriate x in (1).

(c) Note that since V transforms one basis into another basis, it must be an invertible
matrix. Let us compute the condition number of V numerically.1 Compute the 2-
based condition number κ2(V ) for n = 5, 10, 20, 30 with uniformly spaced nodes
xi = −1 + (2i)/n, i = 0, . . . , n. Based on the condition numbers, can this basis
transformation be performed accurately?

1MATLAB provides the function vander, which can be used to assemble V (actually, the transpose of V ).
Alternatively, one can use a simple loop to construct V .
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2. [Polynomial interpolation and error estimation, 2+2+2+2pts] Let us interpolate the
function f : [0, 1] → R defined by f(x) = exp(3x) using the nodes xi = i/2, i = 0, 1, 2
by a quadratic polynomial p2 ∈ P 2.

(a) Use the monomial basis 1, x, x2 and compute (numerically) the coefficients cj ∈ R
such that p2(x) =

∑2
j=0 cjx

j. Plot p2 and f in the same graph.

(b) Give an alternative form for p2 using Lagrange interpolation polynomials L0(x), L1(x)
and L2(x). Plot the three Lagrange basis polynomials in the same graph.

(c) Compare the exact interpolation error Ef (x) := f(x) − p2(x) at x = 3/4 with the
estimate

|Ef (x)| ≤
Mn+1

(n+ 1)!
|πn+1(x)|,

where Mn+1 = maxz∈[0,1] |f (n+1)(z)|, f (n+1) is the (n + 1)st derivative of f , and
πn+1(x) = (x− x0)(x− x1)(x− x2).

(d) Find a (Hermite) polynomial p3 ∈ P 3 that interpolates f and f ′ in x0, x1. Give the
polynomial p3 in the Hermite basis, plot f and p3 in the same graph, and plot the
four Hermite basis functions in another graph.

3. [Polynomial interpolation, 10pts] Interpolate the function

f(x) =

{
1 if x ≥ 0

0 if x < 0,

on the domain [−1, 1] using Lagrange polynomials with Chebyshev points.

Describe qualitatively what you see for n = 2, 4, 8, 16, 32, 64, 128, 256 interpolation points.
Provide a table of the maximum errors

||pn − f ||∞ = max
x∈[−1,1]

|pn(x)− f(x)|,

and the L2-errors

||pn − f ||2 =

√∫ 1

−1
(pn(x)− f(x))2dx

for each n = 2, 4, 8, 16, 32, 64, 128, 256. Do you expect convergence in the maximum
norm? How about in the L2 norm?

4. [Hermite interpolation, 5pts] We are given distinct interpolation points xi, i = 0, . . . , n.
Show that the Hermite interpolation polynomials Hk(x) and Kk(x) satisfy the following:

Hk(xi) =

{
1 if i = k

0 if i 6= k,
and H ′k(xi) = 0, i = 0, . . . , n.

K ′k(xi) =

{
1 if i = k

0 if i 6= k,
and Kk(xi) = 0, i = 0, . . . , n.
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5. [Newton–Cotes quadrature, 2+4+4pts] In this question, we want to investigate the
surprising result that Newton–Cotes quadrature is exact for polynomials of degree n+1, if
n is even.

(a) Why is Newton–Cotes quadrature with n quadrature nodes exact for polynomials of
degree n?

(b) Let wk be the quadrature weights. Show that wk = wn−k for k = 0, . . . , n. To help
you with this, remember that the quadrature nodes are defined as xi = a + i

(
b−a
n

)
.

Also recall the definition of wk:

wk =

∫ b

a

Lk(x)dx.

As a hint, do a change of variables in the integration of the form: x = xk− y+xn−k.

(c) Using part (b), show that Newton–Cotes quadrature is exact for polynomials of degree
n + 1, when n is even. More specifically, given an arbitrary monic polynomial f of
degree n+ 1 (without loss of generality), show that:∫ b

a

f(x)dx =
n∑

k=0

wkf(xk).

As a hint, use the n + 1 degree polynomial g(x) = (x − a+b
2
)n+1. Also, note that

when n is even, the point a+b
2

is a quadrature node. Observe that the polynomial
f − g is of degree n, implying Newton–Cotes quadrature is exact for this polynomial
from part (a).

Note 1: You can approximate the maximum error by evaluating the error pn − f at a
large number of uniformly distributed points, e.g. at ∼ 10n points, and determining the
difference with maximum absolute value, i.e.

||pn − f ||∞ = max
x∈[−1,1]

|pn(x)− f(x)| ≈ max
j=0,...,10n

|pn(ξj)− f(ξj)|,

where ξj = −1 + 2
10n
j for j = 0 . . . 10n.

Note 2: You can approximate the L2-error by evaluating the definite integral using, e.g.,
a composite quadrature rule of your choice.

Note 3: You can use the MATLAB function lagrange interpolant.m provided on
Piazza to compute the values of the Lagrange interpolants pn.

Note 4: Recall that the Chebyshev points on the interval [a, b] are

xi =
1

2
(a+ b) +

1

2
(b− a) cos

(
i+ 1

2

n+ 1

)
for i = 0, . . . , n.
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6. [Bonus, composite trapezoidal rule, 5pts] Let Q(n) be the composite trapezoidal rule

approximation to
∫ b

a
f(x)dx, with [a, b] divided into n subintervals. Show that

Q(n)−Q(2n)
Q(2n)−Q(4n)

→ 4 as n→∞.
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