Spring 2019: Numerical Analysis Assignment 5 (due May 3, 2019)

Please see the helpful hints at the bottom of the homework. Also, try the Matlab publish command to print out your code along with the output. For all Matlab calculations and plots you do, please turn in your code.

- [Space of polynomials P_n, 1+2+2pts] Let P_n be the space of functions defined on [-1,1] that can be described by polynomials of degree less of equal to n with coefficients in ℝ. P_n is a linear space in the sense of linear algebra, in particular, for p,q ∈ P_n and a ∈ ℝ, also p + q and ap are in P_n. Since the monomials {1, x, x², ..., xⁿ} are a basis for P_n, the dimension of that space is n + 1.
 - (a) Show that for pairwise distinct points $x_0, x_1, \ldots, x_n \in [-1, 1]$, the Lagrange polynomials $L_k(x)$ are in P_n , and that they are linearly independent, that is, for a linear combination of the zero polynomial with Lagrange polynomials with coefficients α_k , i.e.,

$$\sum_{k=0}^{n} \alpha_k L_k(x) = 0 \text{ (the zero polynomial)}$$

necessarily follows that $\alpha_0 = \alpha_1 = \ldots = \alpha_n = 0$. Note that this implies that the (n+1) Lagrange polynomials also form a basis of P_n .

(b) Since both the monomials and the Lagrange polynomials are a basis of P_n , each $p \in P_n$ can be written as linear combination of monomials as well as Lagrange polynomials, i.e.,

$$p(x) = \sum_{k=0}^{n} \alpha_k L_k(x) = \sum_{k=0}^{n} \beta_k x^k,$$
 (1)

with appropriate coefficients $\alpha_k, \beta_k \in \mathbb{R}$. As you know from basic matrix theory, there exists a basis transformation matrix that converts the coefficients $\boldsymbol{\alpha} = (\alpha_0, \ldots, \alpha_n)^T$ to the coefficients $\boldsymbol{\beta} = (\beta_0, \ldots, \beta_n)^T$. Show that this basis transformation matrix is given by the so-called Vandermonde matrix $V \in \mathbb{R}^{n+1 \times n+1}$ given by

$$V = \begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} & x_n^n \end{pmatrix}$$

i.e., the relation between α and β in (1) is given by $\alpha = V\beta$. An easy way to see this is to choose appropriate x in (1).

(c) Note that since V transforms one basis into another basis, it must be an invertible matrix. Let us compute the condition number of V numerically.¹ Compute the 2-based condition number $\kappa_2(V)$ for n = 5, 10, 20, 30 with uniformly spaced nodes $x_i = -1 + (2i)/n$, i = 0, ..., n. Based on the condition numbers, can this basis transformation be performed accurately?

¹MATLAB provides the function vander, which can be used to assemble V (actually, the transpose of V). Alternatively, one can use a simple loop to construct V.

- [Polynomial interpolation and error estimation, 2+2+2+2pts] Let us interpolate the function f: [0,1] → R defined by f(x) = exp(3x) using the nodes x_i = i/2, i = 0, 1, 2 by a quadratic polynomial p₂ ∈ P₂.
 - (a) Use the monomial basis $1, x, x^2$ and compute (numerically) the coefficients $c_j \in \mathbb{R}$ such that $p_2(x) = \sum_{j=0}^2 c_j x^j$. Plot p_2 and f in the same graph.
 - (b) Give an alternative form for p_2 using Lagrange interpolation polynomials $L_0(x)$, $L_1(x)$ and $L_2(x)$. Plot the three Lagrange basis polynomials in the same graph.
 - (c) Compare the exact interpolation error $E_f(x) := f(x) p_2(x)$ at x = 3/4 with the estimate

$$|E_f(x)| \le \frac{M_{n+1}}{(n+1)!} |\pi_{n+1}(x)|,$$

where $M_{n+1} = \max_{z \in [0,1]} |f^{(n+1)}(z)|$, $f^{(n+1)}$ is the (n+1)st derivative of f, and $\pi_{n+1}(x) = (x - x_0)(x - x_1)(x - x_2)$.

- (d) Find a (Hermite) polynomial $p_3 \in \mathbf{P}_3$ that interpolates f and f' in x_0, x_1 . Give the polynomial p_3 in the Hermite basis, plot f and p_3 in the same graph, and plot the four Hermite basis functions in another graph.
- 3. [Polynomial interpolation, 10pts] Interpolate the function

$$f(x) = \begin{cases} 1 & \text{if } x \ge 0\\ 0 & \text{if } x < 0, \end{cases}$$

on the domain [-1,1] using Lagrange polynomials with Chebyshev points.

Describe qualitatively what you see for n = 2, 4, 8, 16, 32, 64, 128, 256 interpolation points. Provide a table of the maximum errors

$$||p_n - f||_{\infty} = \max_{x \in [-1,1]} |p_n(x) - f(x)|,$$

and the L_2 -errors

$$||p_n - f||_2 = \sqrt{\int_{-1}^{1} (p_n(x) - f(x))^2 dx}$$

for each n = 2, 4, 8, 16, 32, 64, 128, 256. Do you expect convergence in the maximum norm? How about in the L_2 norm?

4. [Hermite interpolation, 5pts] We are given distinct interpolation points x_i , i = 0, ..., n. Show that the Hermite interpolation polynomials $H_k(x)$ and $K_k(x)$ satisfy the following:

$$H_k(x_i) = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{if } i \neq k, \end{cases} \text{ and } H'_k(x_i) = 0, \quad i = 0, \dots, n.$$

$$K'_k(x_i) = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{if } i \neq k, \end{cases} \quad \text{and} \quad K_k(x_i) = 0, \quad i = 0, \dots, n \end{cases}$$

- [Newton-Cotes quadrature, 2+4+4pts] In this question, we want to investigate the surprising result that Newton-Cotes quadrature is exact for polynomials of degree n+1, if n is even.
 - (a) Why is Newton-Cotes quadrature with n quadrature nodes exact for polynomials of degree n?
 - (b) Let w_k be the quadrature weights. Show that $w_k = w_{n-k}$ for k = 0, ..., n. To help you with this, remember that the quadrature nodes are defined as $x_i = a + i \left(\frac{b-a}{n}\right)$. Also recall the definition of w_k :

$$w_k = \int_a^b L_k(x) dx.$$

As a hint, do a change of variables in the integration of the form: $x = x_k - y + x_{n-k}$.

(c) Using part (b), show that Newton-Cotes quadrature is exact for polynomials of degree n + 1, when n is even. More specifically, given an arbitrary monic polynomial f of degree n + 1 (without loss of generality), show that:

$$\int_{a}^{b} f(x)dx = \sum_{k=0}^{n} w_k f(x_k).$$

As a hint, use the n + 1 degree polynomial $g(x) = (x - \frac{a+b}{2})^{n+1}$. Also, note that when n is even, the point $\frac{a+b}{2}$ is a quadrature node. Observe that the polynomial f - g is of degree n, implying Newton-Cotes quadrature is exact for this polynomial from part (a).

Note 1: You can approximate the maximum error by evaluating the error $p_n - f$ at a large number of uniformly distributed points, e.g. at $\sim 10n$ points, and determining the difference with maximum absolute value, i.e.

$$||p_n - f||_{\infty} = \max_{x \in [-1,1]} |p_n(x) - f(x)| \approx \max_{j=0,\dots,10n} |p_n(\xi_j) - f(\xi_j)|$$

where $\xi_j = -1 + \frac{2}{10n}j$ for j = 0...10n.

Note 2: You can approximate the L_2 -error by evaluating the definite integral using, e.g., a composite quadrature rule of your choice.

Note 3: You can use the MATLAB function lagrange_interpolant.m provided on Piazza to compute the values of the Lagrange interpolants p_n .

Note 4: Recall that the Chebyshev points on the interval [a, b] are

$$x_i = \frac{1}{2}(a+b) + \frac{1}{2}(b-a)\cos\left(\frac{i+\frac{1}{2}}{n+1}\right)$$
 for $i = 0, \dots, n$

6. [Bonus, composite trapezoidal rule, 5pts] Let Q(n) be the composite trapezoidal rule approximation to $\int_a^b f(x) dx$, with [a, b] divided into n subintervals. Show that

$$\frac{Q(n)-Q(2n)}{Q(2n)-Q(4n)}\to 4 \text{ as } n\to\infty.$$